首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
HBP-1a and HBP-1b: leucine zipper-type transcription factors of wheat   总被引:21,自引:2,他引:19       下载免费PDF全文
T Tabata  T Nakayama  K Mikami    M Iwabuchi 《The EMBO journal》1991,10(6):1459-1467
  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Protein/DNA interactions of the H3-ST519 histone gene promoter were analyzed in vitro. Using several assays for sequence specificity, we established binding sites for ATF/AP1-, CCAAT-, and HiNF-D related DNA binding proteins. These binding sites correlate with two genomic protein/DNA interaction domains previously established for this gene. We show that each of these protein/DNA interactions has a counterpart in other histone genes: H3-ST519 and H4-F0108 histone genes interact with ATF- and HiNF-D related binding activities, whereas H3-ST519 and H1-FNC16 histone genes interact with the same CCAAT-box binding activity. These factors may function in regulatory coupling of the expression of different histone gene classes. We discuss these results within the context of established and putative protein/DNA interaction sites in mammalian histone genes. This model suggests that heterogeneous permutations of protein/DNA interaction elements, which involve both general and cell cycle regulated DNA binding proteins, may govern the cellular competency to express and coordinately control multiple distinct histone genes.  相似文献   

10.
11.
12.
13.
Boyd DC  Greger IH  Murphy S 《Gene》2000,247(1-2):33-44
Mutation and deletion analyses of mammalian class III small nuclear RNA genes transcribed by RNA polymerase (pol) III have defined three functional promoter elements: a distal sequence element (DSE) at around -220, a proximal sequence element (PSE) at around -60 and a TATA box at around -30. Although binding studies have identified factors that bind to these sites in vitro, it is not known exactly how proteins interact with the promoters of these genes in vivo. In this study, we have used dimethyl sulphate and DNase I treatment of HeLa cells and nuclei, respectively, followed by linker-mediated polymerase chain reaction, to obtain in vivo footprints of proteins binding to the promoter of the Pol III-transcribed 7SK gene. Our results show that most of the characterised promoter elements of this gene are protected in vivo in these cells, and the pattern of DNase I protection suggests that a nucleosome lies between the DSE and the PSE. Methylation protection was also seen upstream of the DSE over a sequence corresponding to the binding site of a POZ domain-containing protein, ZID, which interacts with components of histone deacetylase complexes. These findings suggest that chromatin structure plays a role in the cascade of protein-DNA interactions that regulate expression of this pol III-transcribed gene.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号