首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of exogenous dehydroepiandrosterone-sulfate (DHAS) on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL) and thyroid-stimulating hormone (TSH) pituitary secretion was studied in 8 normal women during the early follicular phase. The plasma levels of these hormones were evaluated after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing hormone (TRH) stimulation performed after placebo or after 30 mg DHAS i.v. administration. The half-life of DHAS was also calculated on two subjects; two main components of decay were detected with half-times of 0.73-1.08 and 23.1-28.8 h. The results show an adequate response of all hormones to GnRH or TRH tests which was not significantly modified, in the case of LH, FSH and PRL, when performed in the presence of high levels of DHAS. However, the TSH response to TRH was significantly less suppressed (p less than 0.05) (39%) after DHAS administration than during repeated TRH stimulation without DHAS (51%). The data support the hypothesis that DHAS does not affect LH, FSH and PRL secretion, while TSH seemed to be partially influenced.  相似文献   

2.
We have assessed the gonadotropin, TSH and PRL responses to the non aromatizable androgens, mesterolone and fluoxymestrone, in 27 patients with primary testicular failure. All patients were given a bolus of LHRH (100 micrograms) and TRH (200 micrograms) at zero time. Nine subjects received a further bolus of TRH at 30 mins. The latter were then given mesterolone 150 mg daily for 6 weeks. The remaining subjects received fluoxymesterone 5 mg daily for 4 weeks and 10 mg daily for 2 weeks. On the last day of the androgen administration, the subjects were re-challenged with LHRH and TRH according to the identical protocol. When compared to controls, the patients had normal circulating levels of testosterone, estradiol, PRL and thyroid hormones. However, basal LH, FSH and TSH levels, as well as gonadotropin responses to LHRH and TSH and PRL responses to TRH, were increased. Mesterolone administration produced no changes in steroids, thyroid hormones, gonadotropins nor PRL. There was, however, a reduction in the integrated and incremental TSH secretion after TRH. Fluoxymesterone administration was accompanied by a reduction in thyroid binding globulin (with associated decreases in T3 and increases in T3 resin uptake). The free T4 index was unaltered, which implies that thyroid function was unchanged. In addition, during fluoxymesterone administration, there was a reduction in testosterone, gonadotropins and LH response to LHRH. Basal TSH did not vary, but there was a reduction in the peak and integrated TSH response to TRH. PRL levels were unaltered during fluoxymesterone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To Clarify the relationship between the time interval and pituitary Luteinizing hormone (LH), Follicular stimulation hormone (FSH) and prolactin (PRL) secretion function under LHRH-TRH stimulation, 4 mature female baboons were used. Two consecutive LHRH (100 micrograms)-TRH (250 micrograms) stimulations with a 60 min interval between them was carried out in the early follicular phase, late follicular phase and mid luteal phase in the same baboon in the first menstrual cycle, then carried out with a 120 min interval between tests in the third menstrual cycle. The LH, FSH and PRL were measured by specific radioimmunoassay. The PRL maximum response to the first bolus of TRH was higher than maximum response to the second bolus of TRH. The PRL maximum response to the second TRH at a 120 min interval was higher than the maximum response to the second TRH at a 60 min interval. It seems that the TRH had the dominant effect on PRL releasing but not on PRL Priming. The maximum LH response to the second bolus of LHRH was higher than the maximum response to the first bolus of LHRH. The LH maximum response to the second bolus of LHRH at a 60 min interval was greater than the maximum response at a 120 min interval in the follicular phase but it was the reverse in the luteal phase. The FSH response to the second LHRH was different from the LH response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of a combined test (insulin, TRH, LHRH) on plasma levels of GH, LH, FSH, PRL and Cortisol was studied in 5 subjects with short stature. Two test were performed at 8 a.m. and at 8 p.m. In all subjects the GH, FSH, LH, TSH, PRL and Cortisol levels showed no relevant response during the two tests.  相似文献   

5.
The role of pituitary and sexual hormones in 21 patients with chronic renal failure (CRF) and related impotence and loss of libido who were being treated by hemodialysis and in 15 normal male controls has been studied. In both groups the serum levels of FSH, LH and TSH, PRL before and after injection of both LHRH and TRH were measured as well as the basal levels of Testosterone (T) and Estradiol (E2). The results show similar values for testosterone in both groups and statistically significant higher basal values for FSH, LH, TSH and PRL and lower basal values for E2 in CRF patients.  相似文献   

6.
To clarify the effects of cyclosporine A (CsA) on the secretion of serum thyrotropin (TSH), prolactin (PRL), luteinizing hormone (LH) and follicular stimulating hormone (FSH), we performed TRH and LH-RH testing in 4 patients with the nephrotic syndrome before and after the administration of CsA, 6 mg/kg/day for 4 to 12 weeks. Prior to CsA all patients responded normally to TRH with respect to TSH and PRL secretion. Two patients showed normal response of LH and FSH to LH-RH stimulation while the response in 2 other patients, who were both menopausal, was exaggerated. By the third or fourth week of CsA administration the basal and peak TSH and PRL values declined significantly in all patients in response to TRH stimulation while those of LH and FSH showed only a modest decrease in response to LH-RH stimulation. Two to 4 weeks after the cessation of CsA the response of TSH, PRL and FSH returned to the pretreatment level. These observations suggest that: 1) CsA exerts an inhibitory effect on the secretion of at least TSH and PRL in humans, and 2) the effect of CsA on the pituitary may be partially reversible after the cessation of the therapy.  相似文献   

7.
The hormonal response to LHRH and TRH was evaluated in three groups of male diaetics. Five patients were receiving therapy with the hypoglycemic agent glibenclamide, five were on NPH insulin and five were on dietary therapy alone. When compared to controls, the latter two groups had intact gonadotropin responses to LHRH. Despite normal basal gonadotropin levels, however, the group receiving glibenclamide therapy showed significantly exaggerated LH and FSH responses to LHRH. Both basal PRL and TSH levels, as well as the responses to TRH were normal in all three groups. These results indicate that LH, FSH, TSH and PRL secretion is intact in uncomplicated diabetes mellitus. The exaggerated LH and FSH responses to LHRH in the glibenclamide treated subjects are probably related to primary gonadal involvement; alternatively, there may be augmented pituitary gonadotropin secretion in this group.  相似文献   

8.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

9.
While exploring the interaction between thyrotropin releasing hormone (TRH) and normal rat anterior pituitary cells in monolayer culture we observed that cells dissociated with the use of trypsin did not respond to TRH with an increase in either TSH or prolactin (PRL) release. The dissociated cells were cultured for 3 days, then washed to remove serum proteins and exposed to 10?6M TRH for 3 hours. TSH and PRL secretion from stimulated and unstimulated cultures was determined by radio-immunoassay and normalized using cell protein. When such trypsin-dissociated cells were exposed to 0.5 mM dibutyryl cyclic AMP the release of both TSH and PRL doubled indicating that the intracellular secretory machinery was functional and that the block to TRH was proximal to the formation of cyclic AMP and presumably at the level of a TRH surface receptor. Previous studies have shown that such trypsin-dissociated cells respond to LHRH and a crude hypothalamic extract with a dose dependent increase in LH, FSH and ACTH release. This rules out a non-specific effect of trypsin. When pituitary cells were dissociated with a non-trypsin technique, the unstimulated release of both TSH and PRL was comparable to that found with the trypsin-dissociated cultures. However, these cultures did respond to TRH with an increase in TSH release although again no effect was seen with PRL. The susceptibility of the cells to trypsin suggests the possibility that a protein moiety may be closely associated with the function of the receptor.  相似文献   

10.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

11.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

12.
DBcAMP significantly increased the release of GH but not of LH, FSH, TSH, or PRL, except in the presence of hypothalamic extract when it augmented the release of LH, FSH, and GH, reversed the inhibition of PRL, but did not further influence TSH release. Theophylline increased release of GH and PRL while inducing increased tissue content of cAMP without consistently increasing the release of TSH, LH, or FSH. Hypothalamic extractor K+-stimulated hormone rel-ase was consistently and significantly potentiated by theophylline. Neither hypothalamic extract, increased [K+], or synthetic TRH and LRH were able to raise tissue content of cAMP while producing their expected effects on hormone release. Cholera enterotoxin produced a highly significant increase in tissue content of the cyclic nucleotide but increased the release of GH only, and not that of LH, FSH, TSH, or PRL. DBcAMP was able to lower the threshold concentration of K+ required to stimulate release of GH, LH, and FSH and also to augment K+-stimulated release to the higher levels induced by the hypothalamic releasing hormones. It did not augment K+-induced release of TSH.  相似文献   

13.
We have examined the effects of a single subcutaneous injection of an LHRH agonist, D-Trp-6-LHRH, in biodegradable microcapsules of poly(DL-lactide-co-glycolide) on plasma gonadotropin and prolactin (PRL) levels in castrated and in castrated-hypophysectomized-pituitary grafted (CAST-APX-GRAFT) male rats. The results were compared to the effects of daily injections of the same LHRH agonist dissolved in saline. In castrated rats, there were no significant alterations in plasma LH or PRL levels during the 10 days following the injection of LHRH agonist microcapsules, while FSH levels were generally reduced. In castrated males given daily injections of 6 micrograms of LHRH agonist in saline, plasma LH levels were significantly reduced while plasma PRL levels were not changed. In CAST-APX-GRAFT rats, both D-Trp-6-LHRH microcapsules and daily LHRH agonist injections appeared to increase plasma PRL levels. The pattern of changes in PRL release in both groups was similar, with levels on day 6 being significantly higher than those measured on days 1, 3 and 10 after onset of treatment. As expected, LH and FSH levels in these animals were extremely low. Immunoreactive D-Trp-6-LHRH was consistently detectable in the plasma of CAST-APX-GRAFT animals after microcapsule administration, whereas in animals given daily injections of this agonist in saline, its plasma concentrations were often below the detectability limit of the employed assay. These findings suggest that the LHRH agonist, D-Trp-6-LHRH, is capable of causing a short term stimulation of PRL release from ectopic pituitaries. Elevation of plasma LH levels is apparently not required for this effect.  相似文献   

14.
Effects of phenobarbital (PB), carbamazepine (CBZ) and sodium valproate (VPA) monotherapy on endocrine functions were investigated in 7 clinically prepubertal children aged 5-10 8/12 years. The following meaning results were observed: normal PRL release, low basal T4 levels in PB-, CBZ-treated children and normal T4 basal level in the VPA-treated child; normal T3, rT3, TBG and TSH basal values and normal TSH release in all treated children, normal FSH release in PB-, CBZ- and VPA-treated females, high LH levels before and after LHRH injection in CBZ- and PB-treated females; normal levels in the VPA-treated one, normal basal FSH levels and increased releases in PB- and CBZ-treated males, high LH levels before and after LHRH injection in PB- and CBZ-treated males, normal basal and peak levels of GH.  相似文献   

15.
Synthetic thyrotropin-releasing hormone (TRH) tartrate monohydrate was administered by rapid intravenous injection to nine normal males. Plasma thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured before and at selected periods after TRH injection. The mean plasma TSH value immediately prior to TRH injection was 3.5 muU/ml and the level 15 min after injection was 14.8 muU/ml. The mean plasma LH value immediately prior to TRH injection was 8.0 mIU/ml and the level 15 min after injection was 15.0 mIU/ml. The latter elevation was statistically significant (p less than 0.01), although it was just above the upper normal range. The mean plasma FSH value immediately prior to TRH injecion was 7.7 mIU/ml, and a significant difference was not observed after TRH administration. These results revealed that synthetic TRH tartrate monohydrate influenced the release of LH from the anterior pituitary.  相似文献   

16.
An attempt was made to determine the synergistic effect of TRH stimulated prolactin with LH on the luteinization of corpus luteum in baboons. Four normally cycling female baboons were used in this study. Synthetic LHRH (100 micrograms) was given during the early luteal phase and blood samples were collected sequentially for assay of progestin. In additional experiments, 40 micrograms of synthetic TRH was given at 30 and 60 minutes after LHRH injection and blood samples were assayed for progestin. Injection of LHRH elevated the plasma level of progestin. Subsequent treatment with TRH in LHRH treated baboons enhanced the elevation of plasma progestin in three of four baboons. The evidence illustrates the nature of synergistic effect of prolactin with LH on the luteinization of corpus luteum in baboons.  相似文献   

17.
The effect of a combined test (insulin, TRH, LHRH) on plasma concentrations of LH, FSH, PRL, Cortisol was studied in 18 normal subjects in prepubescent state and in 65 patients in prepubescent state with short stature. In 6 subjects with short stature there was no change of LH, and in 7 subjects with short stature there was no change of FSH. In conclusion the combined test for pituitary stimulation provides an useful method for localizing the lesion in disorders of hypothalamo-pituitary axis.  相似文献   

18.
Pituitary-thyroid axis function and gonadotropin secretion were evaluated by a combined TRH and LHRH test in 4 newborn female infants appropriate for gestational age of mothers treated by AEDs throughout pregnancy. We found: high basal FSH levels with normal FSH reserve, normal LH-HCG levels both before and after LHRH stimulation, normal TSH and T4 levels both before and after TRH stimulation, high T3 basal values with a normal increase after TRH and low rT3 basal values. It is suggested an AED increased T4 deiodination towards T3 in the newborn liver without a marked impairment of the endocrine functions of the fetus.  相似文献   

19.
We studied the anterior pituitary function in 36 patients (25 females and 11 males, mean age: 35 years) with untreated Cushing's syndrome by simultaneous triple stimulus with insulin, TRH and LHRH. Thirty-one patients (86%) had Cushing's disease and five (14%) had an adrenal adenoma. We observed a lack of response of GH to hypoglycemia in 88%, TSH to TRH in 91%, LH to LHRH in 30%, FSH to LHRH in 12% and PRL to TRH in 6% of the patients. Low-to-normal total thyroxine (T4) values were obtained in 37%, with low triiodothyronine levels in 87%. The free-T4 index was normal in all patients. Total testosterone was low in only one adult man, while estradiol and progesterone were low in 45% and 15% of premenopausal women, respectively. We observed no differences in either axis among patients with Cushing's syndrome of different etiologies. Nor was there any statistical difference between the frequency of alteration of each axis and the levels of urinary free cortisol or the duration of the disease. We conclude that hypercortisolism is responsible for the abnormalities in anterior pituitary function in Cushing's syndrome.  相似文献   

20.
Attempts were made to find out whether hyperprolactinemia has an effect on the hypothalamo-pituitary response to estrogen feedback and LHRH stimulation. Adult female rats of Wistar strain were ovariectomized and received subcutaneous injection of 20 micrograms estradiol benzoate (EB) 3-4 weeks later (day-0). A second injection of 20 micrograms EB, when administered at noon on day-3, induced a highly significant increase in serum LH (p less than 0.001 vs. basal values), but not FSH, estimated at 1800 h on the same day. This EB-promoted LH release was not altered by pretreatment with rat PRL (5 micrograms/day), which was administered subcutaneously daily in the morning (1100 h) between day-1 and day-3. No statistical difference in the serum LH concentration was found when compared with the values for the control animals pretreated with 0.9% saline alone. Serum gonadotropins 15 min after LHRH administration (100 ng/100 g BW) in 32-day-old female rats were not statistically different between the animals pretreated with 5 micrograms PRL, which was given subcutaneously daily (at 0800 h) for 3 days, and the controls pretreated with 0.9% saline. These results suggest that an acute increase in serum PRL may not exert a negative effect on the gonadotropin release induced by estrogen feedback and LHRH stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号