首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Peptides bind with high affinity to MHC class I molecules by anchoring certain side-chains (anchors) into specificity pockets in the MHC peptide-binding groove. Peptides that do not contain these canonical anchor residues normally have low affinity, resulting in impaired pMHC stability and loss of immunogenicity. Here, we report the crystal structure at 1.6 A resolution of an immunogenic, low-affinity peptide from the tumor-associated antigen MUC1, bound to H-2Kb. Stable binding is still achieved despite small, non-canonical residues in the C and F anchor pockets. This structure reveals how low-affinity peptides can be utilized in the design of novel peptide-based tumor vaccines. The molecular interactions elucidated in this non-canonical low-affinity peptide MHC complex should help uncover additional immunogenic peptides from primary protein sequences and aid in the design of alternative approaches for T-cell vaccines.  相似文献   

2.
Class I major histocompatibility complex (MHC) molecules bind short peptides derived from proteins synthesized within the cell. These complexes of peptide and class I MHC (pMHC) are transported from the endoplasmic reticulum to the cell surface. If a clonotypic T cell receptor expressed on a circulating T cell binds to the pMHC complex, the cell presenting the pMHC is killed. In this manner, some tumor cells expressing aberrant proteins are recognized and removed by the immune system. However, not all tumors are recognized efficiently. One reason hypothesized for poor T cell recognition of tumor-associated peptides is poor binding of those peptides to class I MHC molecules. Many peptides, derived from the proto-oncogene HER-2/neu have been shown to be recognized by cytotoxic T cells derived from HLA-A2(+) patients with breast cancer and other adenocarcinomas. Seven of these peptides were found to bind with intermediate to poor affinity. In particular, GP2 (HER-2/neu residues 654-662) binds very poorly even though it is predicted to bind well based upon the presence of the correct HLA-A2.1 peptide-binding motif. Altering the anchor residues to those most favored by HLA-A2.1 did not significantly improve binding affinity. The crystallographic structure shows that unlike other class I-peptide structures, the center of the peptide does not assume one specific conformation and does not make stabilizing contacts with the peptide-binding cleft.  相似文献   

3.
We report the creation of TCR partial agonists by the novel approach of manipulating the interaction between immunogenic peptide and MHC. Amino acids at MHC anchor positions of the I-E(k)-restricted hemoglobin (64-76) and moth cytochrome c (88-103) peptides were exchanged with MHC anchor residues from the low affinity class II invariant chain peptide (CLIP), resulting in antigenic peptides with altered affinity for MHC class II. Several low affinity peptides were identified as TCR partial agonists, as defined by the ability to stimulate cytolytic function but not proliferation. For example, a peptide containing methionine substitutions at positions one and nine of the I-E(k) binding motif acted as a partial agonist for two hemoglobin-reactive T cell clones (PL.17 and 3.L2). The identical MHC anchor substitutions in moth cytochrome c (88-103) also created a partial agonist for a mCC-reactive T cell (A.E7). Thus, peptides containing MHC anchor modifications mediated similar T cell responses regardless of TCR fine specificity or antigen reactivity. This data contrasts with the unique specificity among individual clones demonstrated using traditional altered peptide ligands containing substitutions at TCR contact residues. In conclusion, we demonstrate that altering the MHC anchor residues of the immunogenic peptide can be a powerful method to create TCR partial agonists.  相似文献   

4.
A common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immunotherapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues. We herein demonstrate that the binding of TCR-like recombinant Abs, specific for the melanoma differentiation Ag gp100 T cell epitope G9-209, is entirely dependent on the identity of a single peptide anchor residue at position 2. An example is shown in which TCR-like Abs can recognize the specific complex only when a modified peptide, G9-209-2 M, with improved affinity to HLA-A2 was used, but not with the unmodified natural peptide. Importantly, these results demonstrate, using a novel molecular tool, that modifications at anchor residues can dramatically influence the conformation of the MHC peptide groove and thus may have a profound effect on TCR interactions. Moreover, these results may have important implications in designing modifications in peptides for cancer immunotherapy, because most such peptides studied are of low affinity.  相似文献   

5.
Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306–318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.  相似文献   

6.
The complexity of the interaction between major histocompatibility complex class II (MHC II) proteins and peptide ligands has been revealed through structural studies and crystallographic characterization. Peptides bind through side-chain "anchor" interactions with MHC II pockets and an extensive array of genetically conserved hydrogen bonds to the peptide backbone. Here we quantitatively investigate the kinetic hierarchy of these interactions. We present results detailing the impact of single side-chain mutations of peptide anchor residues on dissociation rates, utilizing two I-A(d)-restricted peptides, one of which has a known crystal structure, and 24 natural and non-natural amino acid mutant variants of these peptides. We find that the N-terminal P1, P4 and P6 anchor-pocket interactions can make significant contributions to binding stability. We also investigate the interactions of these peptides with four I-A(d) MHC II proteins, each mutated to disrupt conserved hydrogen bonds to the peptide backbone. These complexes exhibit kinetic behavior suggesting that binding energy is disproportionately invested near the peptide N terminus for backbone hydrogen bonds. We then evaluate the effects of simultaneously modifying both anchor and hydrogen bonding interactions. A quantitative analysis of 71 double mutant cycles reveals that there is little apparent cooperativity between anchor residue interactions and hydrogen bonds, even when they are directly adjacent (<5A).  相似文献   

7.
BACKGROUND: Qa-2 is a nonclassical MHC Ib antigen, which has been implicated in both innate and adaptive immune responses, as well as embryonic development. Qa-2 has an unusual peptide binding specificity in that it requires two dominant C-terminal anchor residues and is capable of associating with a substantially more diverse array of peptide sequences than other nonclassical MHC. RESULTS: We have determined the crystal structure, to 2.3 A, of the Q9 gene of murine Qa-2 complexed with a self-peptide derived from the L19 ribosomal protein, which is abundant in the pool of peptides eluted from the Q9 groove. The 9 amino acid peptide is bound high in a shallow, hydrophobic binding groove of Q9, which is missing a C pocket. The peptide makes few specific contacts and exhibits extremely poor shape complementarity to the MHC groove, which facilitates the presentation of a degenerate array of sequences. The L19 peptide is in a centrally bulged conformation that is stabilized by intramolecular interactions from the invariant P7 histidine anchor residue and by a hydrophobic core of preferred secondary anchor residues that have minimal interaction with the MHC. CONCLUSIONS: Unexpectedly, the preferred secondary peptide residues that exhibit tenuous contact with Q9 contribute significantly to the overall stability of the peptide-MHC complex. The structure of this complex implies a "conformational" selection by Q9 for peptide residues that optimally stabilize the large bulge rather than making intimate contact with the MHC pockets.  相似文献   

8.
A direct binding assay has been used to investigate the effect of the secondary anchor residues on peptide binding to class I proteins of the major histocompatibility complex. Based on predictions from a previous chemometric approach, synthetic peptide analogues containing unnatural amino acids were synthesized and tested for B*2705 binding. Hydrophobic unnatural amino acids such as α-naphthyl- and cyclohexyl-alanine were found to be excellent substituents in the P3 secondary anchor position giving peptides with very high B*2705-binding affinity. The binding to B*2705 of peptides optimized for their secondary anchor residues, but lacking one of the P2 or P9 primary anchor residues was also investigated. Most such peptides did not bind, but one peptide, lacking the P2 Arg residue generally considered essential for binding to all B27 subtypes, was found to bind quite strongly. These findings demonstrate that peptide binding to class I proteins is due to a combination of all the anchor residues, which may be occupied also by unnatural amino acids–a necessary step towards the development of peptidic or non-peptidic antagonists for immunomodulation.  相似文献   

9.
The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-peptide binding affinities, 29 peptide/MHC crystal structures, and 664 peptides experimentally tested for CD4+ T cell responses to systematically evaluate the performances of publicly available MHC class II binding prediction tools. While in selected instances the best tools were associated with AUC values up to 0.86, in general, class II predictions did not perform as well as historically noted for class I predictions. It appears that the ability of MHC class II molecules to bind variable length peptides, which requires the correct assignment of peptide binding cores, is a critical factor limiting the performance of existing prediction tools. To improve performance, we implemented a consensus prediction approach that combines methods with top performances. We show that this consensus approach achieved best overall performance. Finally, we make the large datasets used publicly available as a benchmark to facilitate further development of MHC class II binding peptide prediction methods.  相似文献   

10.
Peptide binding to MHC class II (MHCII) molecules is stabilized by hydrophobic anchoring and hydrogen bond formation. We view peptide binding as a process in which the peptide folds into the binding groove and to some extent the groove folds around the peptide. Our previous observation of cooperativity when analyzing binding properties of peptides modified at side chains with medium to high solvent accessibility is compatible with such a view. However, a large component of peptide binding is mediated by residues with strong hydrophobic interactions that bind to their respective pockets. If these reflect initial nucleation events they may be upstream of the folding process and not show cooperativity. To test whether the folding hypothesis extends to these anchor interactions, we measured dissociation and affinity to HLA-DR1 of an influenza hemagglutinin-derived peptide with multiple substitutions at major anchor residues. Our results show both negative and positive cooperative effects between hydrophobic pocket interactions. Cooperativity was also observed between hydrophobic pockets and positions with intermediate solvent accessibility, indicating that hydrophobic interactions participate in the overall folding process. These findings point out that predicting the binding potential of epitopes cannot assume additive and independent contributions of the interactions between major MHCII pockets and corresponding peptide side chains.  相似文献   

11.
Peptides bind cell surface MHC class II proteins to yield complexes capable of activating CD4(+) T cells. By contrast, protein Ags require internalization and processing by APC before functional presentation. Here, T cell recognition of a short peptide in the context of class II proteins occurred only after delivery of this ligand to mature endosomal/lysosomal compartments within APC. Functional and biochemical studies revealed that a central cysteine within the peptide was cysteinylated, perturbing T cell recognition of this epitope. Internalization and processing of the modified epitope by APC, was required to restore T cell recognition. Peptide cysteinylation and reduction could occur rapidly and reversibly before MHC binding. Cysteinylation did not disrupt peptide binding to class II molecules, rather the modified peptide displayed an enhanced affinity for MHC at neutral pH. However, once the peptide was bound to class II proteins, oxidation or reduction of cysteine residues was severely limited. Cysteinylation has been shown to radically influence T cell responses to MHC class I ligands. The ability of professional APC to reductively cleave this peptide modification presumably evolved to circumvent a similar problem in MHC class II ligand recognition.  相似文献   

12.
Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.  相似文献   

13.
MHC class I molecules usually bind short peptides of 8-10 amino acids, and binding is dependent on allele-specific anchor residues. However, in a number of cellular systems, class I molecules have been found containing peptides longer than the canonical size. To understand the structural requirements for MHC binding of longer peptides, we used an in vitro class I MHC folding assay to examine peptide variants of the antigenic VSV 8 mer core peptide containing length extensions at either their N or C terminus. This approach allowed us to determine the ability of each peptide to productively form Kb/beta2-microglobulin/peptide complexes. We found that H-2Kb molecules can accommodate extended peptides, but only if the extension occurs at the C-terminal peptide end, and that hydrophobic flanking regions are preferred. Peptides extended at their N terminus did not promote productive formation of the trimolecular complex. A structural basis for such findings comes from molecular modeling of a H-2Kb/12 mer complex and comparative analysis of MHC class I structures. These analyses revealed that structural constraints in the A pocket of the class I peptide binding groove hinder the binding of N-terminal-extended peptides, whereas structural features at the C-terminal peptide residue pocket allow C-terminal peptide extensions to reach out of the cleft. These findings broaden our understanding of the inherent peptide binding and epitope selection criteria of the MHC class I molecule. Core peptides extended at their N terminus cannot bind, but peptide extensions at the C terminus are tolerated.  相似文献   

14.
MHC class II heterodimers bind peptides 12-20 aa in length. The peptide flanking residues (PFRs) of these ligands extend from a central binding core consisting of nine amino acids. Increasing evidence suggests that the PFRs can alter the immunogenicity of T cell epitopes. We have previously noted that eluted peptide pool sequence data derived from an MHC class II Ag reflect patterns of enrichment not only in the core binding region but also in the PFRS: We sought to distinguish whether these enrichments reflect cellular processes or direct MHC-peptide interactions. Using the multiple sclerosis-associated allele HLA-DR2, pool sequence data from naturally processed ligands were compared with the patterns of enrichment obtained by binding semicombinatorial peptide libraries to empty HLA-DR2 molecules. Naturally processed ligands revealed patterns of enrichment reflecting both the binding motif of HLA-DR2 (position (P)1, aliphatic; P4, bulky hydrophobic; and P6, polar) as well as the nonbound flanking regions, including acidic residues at the N terminus and basic residues at the C terminus. These PFR enrichments were independent of MHC-peptide interactions. Further studies revealed similar patterns in nine other HLA alleles, with the C-terminal basic residues being as highly conserved as the previously described N-terminal prolines of MHC class II ligands. There is evidence that addition of C-terminal basic PFRs to known peptide epitopes is able to enhance both processing as well as T cell activation. Recognition of these allele-transcending patterns in the PFRs may prove useful in epitope identification and vaccine design.  相似文献   

15.
HLA-B15 peptide ligands are preferentially anchored at their C termini.   总被引:1,自引:0,他引:1  
Therapies to elicit protective CTL require the selection of pathogen- and tumor-derived peptide ligands for presentation by MHC class I molecules. Edman sequencing of class I peptide pools generates "motifs" that indicate that nonameric ligands bearing conserved position 2 (P2) and P9 anchors provide the optimal search parameters for selecting immunogenic epitopes. To determine how well a motif represents its individual constituents, we used a hollow-fiber peptide production scheme followed by the mapping of endogenously processed class I peptide ligands through reverse-phase HPLC and mass spectrometry. Systematically mapping and characterizing ligands from B*1508, B*1501, B*1503, and B*1510 demonstrate that the peptides bound by these B15 allotypes i) vary in length from 7 to 12 residues, and ii) are more conserved at their C termini than their N-proximal P2 anchors. Comparative peptide mapping of these B15 allotypes further pinpoints endogenously processed ligands that bind to the allotypes B*1508, B*1501, and B*1503, but not B*1510. Overlapping peptide ligands are successful in binding to B*1501, B*1503, and B*1508 because these B15 allotypes share identical C-terminal anchoring pockets whereas B*1510 is divergent in the C-terminal pocket. Therefore, endogenous peptide loading into the B15 allotypes requires that a conserved C terminus be anchored in the appropriate specificity pocket while N-proximal anchors are more flexible in their location and sequence. Queries for overlapping and allele-specific peptide ligands may thus be contingent on a conserved C-terminal anchor.  相似文献   

16.
The crystal structures of the human MHC class I allele HLA-B*5101 in complex with 8-mer, TAFTIPSI, and 9-mer, LPPVVAKEI, immunodominant peptide epitopes from HIV-1 have been determined by x-ray crystallography. In both complexes, the hydrogen-bonding network in the N-terminal anchor (P1) pocket is rearranged as a result of the replacement of the standard tyrosine with histidine at position 171. This results in a nonstandard positioning of the peptide N terminus, which is recognized by B*5101-restricted T cell clones. Unexpectedly, the P5 peptide residues appear to act as anchors, drawing the peptides unusually deeply into the peptide-binding groove of B51. The unique characteristics of P1 and P5 are likely to be responsible for the zig-zag conformation of the 9-mer peptide and the slow assembly of B*5101. A comparison of the surface characteristics in the alpha1-helix C-terminal region for B51 and other MHC class I alleles highlights mainly electrostatic differences that may be important in determining the specificity of human killer cell Ig-like receptor binding.  相似文献   

17.
 The MAGE gene family of tumour antigens are expressed in a wide variety of human cancers. We have identified 43 nonamer peptide sequences, from MAGE-1, -2 and -3 proteins that contain binding motifs for HLA-A3 MHC class I molecules. The T2 cell line, transfected with the cDNA for the HLA-A3 gene, was used in a MHC class I stabilisation assay performed at 37°C and 26°C. At 37°C, 2 peptides were identified that stabilised HLA-A3 with high affinity (fluorescence ratio, FR >1.5), 4 peptides with low affinity (FR 1.11 – 1.49) and 31 peptides that did not stabilise this HLA haplotype (FR <1.1). At 26°C, 12 peptides were identified that stabilised HLA-A3 with high affinity, 8 peptides with low affinity and 17 peptides that did not stabilise this HLA haplotype. Two peptides stabilised HLA-A3 at both temperatures. Small changes in one to three amino acids at positions distinct from the anchor residues altered peptide affinity. Data were compared to a similar study in which a peptide competition assay was used to investigate MAGE-1 peptide binding to several HLA haplotypes. This study demonstrates that anchor residues do not accurately predict peptide binding to specific HLA haplotypes, changes in one to three amino acids at positions distinct from anchor residues influence peptide binding and alternative methods of determining peptide binding yield different results. We are currently investigating the ability of these peptides to induce antitumour cytotoxic T lymphocyte activity as they may be of potential therapeutic value. Received: 4 January 1996 / Accepted: 20 March 1996  相似文献   

18.
Members of the rodent Ly49 receptor family control NK cell responsiveness and demonstrate allele specificity for MHC class I (MHC-I) ligands. For example, the rat Ly49i2 inhibitory NK cell receptor binds RT1-A1(c) but not other rat MHC class Ia or Ib molecules. RT1-A1(c) preferentially binds peptides with proline at the second, or P2, position, which defines it as an HLA-B7 supertype MHC-I molecule. Previously, our laboratory showed that mutations within the MHC-I supertype-defining B-pocket of RT1-A1(c) could lead to alterations in P2 anchor residues of the peptide repertoire bound by RT1-A1(c) and loss of recognition by Ly49i2. Although suggestive of peptide involvement, it was unclear whether the peptide P2 anchor residue or alteration of the RT1-A1(c) primary sequence influenced Ly49i2 recognition. Therefore, we directly investigated the role of the P2 anchor residue of RT1-A1(c)-bound peptides in Ly49i2 recognition. First, fluorescent multimers generated by refolding soluble recombinant RT1-A1(c) with individual synthetic peptides differing only at the P2 anchor residue were examined for binding to Ly49i2 NK cell transfectants. Second, cytotoxicity by Ly49i2-expressing NK cells toward RMA-S target cells expressing RT1-A1(c) bound with peptides that only differ at the P2 anchor residue was evaluated. Our results demonstrate that Ly49i2 recognizes RT1-A1(c) bound with peptides that have Pro or Val at P2, whereas little or no recognition is observed when RT1-A1(c) is complexed with peptide bearing Gln at P2. Thus, the identity of the P2 peptide anchor residue is an integral component of MHC-I recognition by Ly49i2.  相似文献   

19.
MHC proteins are polymorphic cell surface glycoproteins involved in the binding of peptide Ag and their presentation to T lymphocytes. The polymorphic amino acids of MHC proteins are primarily located in the N-terminal domains and are thought to influence T cell recognition both by influencing the binding of peptide Ag and by direct contact with the T cell receptor. In order to determine the relative importance of individual polymorphic amino acids in Ag presentation, a number of groups have taken the approach of interchanging polymorphic amino acids between different alleles of MHC protein in an attempt to define which of the polymorphisms influence peptide binding and which influence T cell recognition by direct contact with the TCR. The peptide OVA323-339 has been previously shown to bind to the MHC class II protein Ad and to have a much lower affinity for Ak, whereas the peptide hen egg lysozyme 46-61 binds well to Ak and poorly to Ad. In the present report, we have analyzed the ability of purified wild-type MHC class II proteins as well as the ability of three different hybrid molecules between Ad and Ak to bind and present these peptides. We find that the alpha-chain of the MHC class II protein plays a critical role in the binding of HEL46-61 and confers the specificity for binding OVA323-339, regardless of which beta-chain is present. We also find that the beta-chain region 65-67 does not control the specificity of peptide binding to the MHC protein, but is important in T cell responses to preformed MHC-peptide complexes, suggesting a role for this region in contacting the TCR.  相似文献   

20.
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号