首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) infects liver cells and its replication in other cells is incompletely defined. Human hepatoma Huh-7 cells harboring subgenomic HCV replicons were used in somatic cell fusion experiments with human embryonic kidney 293 cells as a means of examining the permissiveness of 293 cells for HCV subgenomic RNA replication. 293 cells were generally not permissive for replication of Huh-7 cell-adapted replicons. However, upon coculturing of the two cell lines, we selected rare replicon-containing cells, termed 293Rep cells, that resembled parental 293 cells. Direct metabolic labeling of cells with (33)P in the presence of actinomycin D and Northern blotting to detect the negative strand of the replicon demonstrated functional RNA replicons in 293Rep cells. Furthermore, Western blots revealed that 293Rep cells expressed the HCV nonstructural proteins as well as markers of the na?ve 293 cells but not Huh-7 cells. Propidium iodide staining and fluorescence-activated cell sorting analysis of 293Rep cells revealed that clone 293Rep17 closely resembled na?ve 293 cells. Transfection of total RNA from 293Rep17 into na?ve 293 cells produced replicon-containing 293 cell lines with characteristics distinct from those of Huh-7-derived replicon cell lines. Relative to Huh-7 replicons, the 293 cell replicons were less sensitive to inhibition by alpha interferon and substantially more sensitive to inhibition by poly(I)-poly(C) double-stranded RNA. This study established HCV subgenomic replicons in nonhepatic 293 cells and demonstrated their utility in expanding the study of cellular HCV RNA replication.  相似文献   

2.
The chemokine CXCL-8 (interleukin-8) is induced by many viruses, including hepatitis C virus (HCV). In the current study, we examined CXCL-8 levels in the context of acute and chronic HCV replication in vitro. Two different small interfering RNAs were used to silence CXCL-8 mRNA and protein expression in Huh7 and BB7 replicon cells. HCV RNA synthesis in BB7 cells was inhibited by CXCL-8 knockdown. Furthermore, antibody neutralization of endogenous CXCL-8 activity inhibited HCV replication, while addition of recombinant human CXCL-8 stimulated NS5A protein expression. Moreover, CXCL-8 protein levels correlated positively with HCV RNA levels in four independent subgenomic and genomic replicon lines (R = 0.41, P = 0.0013). However, CXCL-8 mRNA levels correlated inversely with CXCL-8 protein and HCV RNA levels in all replicon lines and in Huh7 cells. Transient replication assays with strongly permissive and weakly permissive Huh7 cells and three independent subgenomic replicons with various replicative capacities revealed that CXCL-8 protein levels were higher in weakly than in strongly permissive cells. The JFH-1 subgenomic replicon, which replicated to high levels in both strongly and weakly permissive Huh7 cells, induced CXCL-8 protein to high levels in both cell types. The data indicate that in the replicon system, CXCL-8 protein levels are positively associated with chronic HCV replication and that CXCL-8 removal inhibits HCV replication. During acute HCV replication, CXCL-8 production may be inhibitory to viruses with low replicative capacity. The data underscore the complex regulation of CXCL-8 mRNA and protein expression and further suggest that in addition to contributing to HCV pathology via proinflammatory actions, CXCL-8 may have opposing antiviral and proviral effects depending on the level of HCV replication, the cellular context, and whether the infection is acute or chronic.  相似文献   

3.
Cell-free replication of the hepatitis C virus subgenomic replicon   总被引:2,自引:0,他引:2       下载免费PDF全文
Ali N  Tardif KD  Siddiqui A 《Journal of virology》2002,76(23):12001-12007
The hepatitis C virus (HCV) contains a plus-strand RNA genome. The 5' noncoding region (NCR) of the viral genome functions as an internal ribosome entry site, and its unique 3' NCR is required for the assembly of the replication complex during initiation of HCV RNA replication. Lohmann et al. (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilman, and R. Batenschlager, Science 285:110-113, 1999) developed a subgenomic HCV replicon system, which represents an important tool in studying HCV replication in cultured cells. In this study, we describe a cell-free replication system that utilizes cytoplasmic lysates prepared from Huh-7 cells harboring the HCV subgenomic replicons. These lysates, which contain ribonucleoprotein complexes associated with cellular membranes, were capable of incorporating [alpha(32)P]CTP into newly synthesized RNA from subgenomic replicons in vitro. Replicative forms (RFs) and replicative intermediates (RIs) were synthesized from the endogenous HCV RNA templates. Consistent with previous observations, RFs were found to be resistant to RNase A digestion, whereas RIs were sensitive to RNase treatment. The radiolabeled HCV RF-RI complexes contained both minus and plus strands and were specific to the lysates derived from replicon-expressing cells. The availability of a cell-free replication system offers opportunities to probe the mechanism(s) of HCV replication. It also provides a novel assay for potential therapeutic agents.  相似文献   

4.
Genetic interactions between hepatitis C virus replicons   总被引:1,自引:0,他引:1       下载免费PDF全文
Evans MJ  Rice CM  Goff SP 《Journal of virology》2004,78(21):12085-12089
To investigate interactions between hepatitis C virus (HCV) RNA replication complexes, a system was developed to simultaneously select different HCV subgenomic replicons within the same cell. Transcomplementation of defective replicons was not observed, suggesting an isolated and independent nature of the HCV RNA replication complex. In contrast, a high level of competition between replicons was observed, such that the presence and increased fitness of one replicon reduced the capacity of a second one to stably replicate. These results suggest that at least one factor in Huh7 cells required for HCV RNA replication is limiting and saturable.  相似文献   

5.
Mutations were introduced into the NS3 helicase region of a hepatitis C virus (HCV) Con1 subgenomic replicon to ascertain the role of the helicase in viral replication. One new replicon lacked two-thirds of the NS3 helicase (Deltahel), and six others contained one of the following six amino acid substitutions in NS3: R393A, F438A, T450I, E493K, W501A, and W501F. It has been previously reported that purified R393A, F438A, and W501A HCV helicase proteins do not unwind RNA but unwind DNA, bind RNA, and hydrolyze ATP. On the other hand, previous data suggest that a W501F protein retains most of its unwinding abilities and that purified T450I and E493K HCV helicase proteins have enhanced unwinding abilities. In a hepatoma cell line that has been cured of HCV replicons using interferon, the T450I and W501F replicons synthesized both negative-sense and positive-sense viral RNA and formed colonies after selection with similar efficiencies as the parent replicon. However, the Deltahel, R393A, F438A, and W501A replicons encoded and processed an HCV polyprotein but did not synthesize additional viral RNA or form colonies. Surprisingly the same phenotype was seen for the E493K replicon. The inability of the E493K replicon to replicate might point to a role of pH in viral replication because a previous analysis has shown that, unlike the wild-type NS3 protein, the helicase activity of an E493K protein is not sensitive to pH changes. These results demonstrate that the RNA-unwinding activity of the HCV NS3 helicase is needed for RNA replication.  相似文献   

6.
Recently, cell culture systems have been established, where a hepatitis C virus (HCV) subgenomic replicon was efficiently replicated and maintained for a long period. To see whether a HCV sequence derived from HCV-infected cultured cell sequence can be used for the construction of a functional replicon, a HCV subgenomic RNA carrying a neomycin-resistant gene was constructed using the HCV genome RNA obtained from cultured cells infected with HCV. After transfection, G418-resistant Huh-7 cells were selected and subcloned. Finally, the production of HCV proteins and de novo synthesis of subgenomic RNA were confirmed in the selected cell clone, indicating that this subgenomic RNA replicated in cultured cells and functioned as a replicon. These results suggest that the HCV genome obtained from an in vitro HCV infection system with cultured cells can be used to develop a subgenomic replicon system with diverse HCV sequences.  相似文献   

7.
While many clinical hepatitis C virus (HCV) infections are resistant to alpha interferon (IFN-alpha) therapy, subgenomic in vitro self-replicating HCV RNAs (HCV replicons) are characterized by marked IFN-alpha sensitivity. IFN-alpha treatment of replicon-containing cells results in a rapid loss of viral RNA via translation inhibition through double-stranded RNA-activated protein kinase (PKR) and also through a new pathway involving RNA editing by an adenosine deaminase that acts on double-stranded RNA (ADAR1). More than 200 genes are induced by IFN-alpha, and yet only a few are attributed with an antiviral role. We show that inhibition of both PKR and ADAR1 by the addition of adenovirus-associated RNA stimulates replicon expression and reduces the amount of inosine recovered from RNA in replicon cells. Small inhibitory RNA, specific for ADAR1, stimulated the replicon 40-fold, indicating that ADAR1 has a role in limiting replication of the viral RNA. This is the first report of ADAR's involvement in a potent antiviral pathway and its action to specifically eliminate HCV RNA through adenosine to inosine editing. These results may explain successful HCV replicon clearance by IFN-alpha in vitro and may provide a promising new therapeutic strategy for HCV as well as other viral infections.  相似文献   

8.
Subgenomic replicons of hepatitis C virus (HCV) have been widely used for studying HCV replication. Here, we report a new subgenomic replicon based on a strain isolated from a chronically infected patient. The coding sequence of HCV was recovered from a Chinese chronic hepatitis C patient displaying high serum HCV copy numbers. A consensus sequence designated as CCH strain was constructed based on the sequences of five clones and this was classified by sequence alignment as belonging to genotype 2a. The subgenomic replicon of CCH was replication-deficient in cell culture, due to dysfunctions in NS3 and NS5B. Various JFH1/CCH chimeric replicons were constructed, and specific mutations were introduced. The introduction of mutations could partially restore the replication of chimeric replicons. A replication-competent chimeric construct was finally obtained by the introduction of NS3 from JFH1 into the backbone of the CCH strain.  相似文献   

9.
Positive-strand RNA viruses replicate their RNA genome within a ribonucleoprotein (RNP) complex that is associated with cellular membranes. We used a two-step method of purification to isolate hepatitis C virus (HCV) RNP complexes from human hepatoma cell line Huh7, which stably expresses HCV subgenomic replicons. The procedure involved hybridization of replicon-expressing cellular lysates with oligonucleotides tagged with biotin and digoxigenin at their respective termini complementary to subgenomic replicon RNA followed by avidin-agarose enrichment of the mixture and subsequent immunoprecipitation of biotin-eluted material with anti-digoxigenin antibody. The immunoprecipitates were immunoblotted with antisera against HCV nonstructural (NS) proteins. The analysis revealed the association of all the HCV NS proteins (NS3, NS4a, NS4b, NS5a, and NS5b) that are encoded by the subgenomic replicon RNA. The HCV RNP complex migrated in a native polyacrylamide gel with an approximate molecular mass of 450 kD. The association of these viral proteins in the RNP complex reinforces the widely acknowledged notion that RNA viruses accomplish replication within a membranous RNP complex.  相似文献   

10.
11.
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg(155) of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg(155) was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg(155) with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5A. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys(155) side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon alpha or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.  相似文献   

12.
Hepatitis C virus (HCV) polymerase activity is essential for HCV replication. Targeted screening of nucleoside analogs identified R1479 (4'-azidocytidine) as a specific inhibitor of HCV replication in the HCV subgenomic replicon system (IC(50) = 1.28 microM) with similar potency compared with 2'-C-methylcytidine (IC(50) = 1.13 microM). R1479 showed no effect on cell viability or proliferation of HCV replicon or Huh-7 cells at concentrations up to 2 mM. HCV replicon RNA could be fully cleared from replicon cells after prolonged incubation with R1479. The corresponding 5'-triphosphate derivative (R1479-TP) is a potent inhibitor of native HCV replicase isolated from replicon cells and of recombinant HCV polymerase (NS5B)-mediated RNA synthesis activity. R1479-TP inhibited RNA synthesis as a CTP-competitive inhibitor with a K(i) of 40 nM. On an HCV RNA-derived template substrate (complementary internal ribosome entry site), R1479-TP showed similar potency of NS5B inhibition compared with 3'-dCTP. R1479-TP was incorporated into nascent RNA by HCV polymerase and reduced further elongation with similar efficiency compared with 3'-dCTP under the reaction conditions. The S282T point mutation in the coding sequence of NS5B confers resistance to inhibition by 2'-C-MeATP and other 2'-methyl-nucleotides. In contrast, the S282T mutation did not confer cross-resistance to R1479.  相似文献   

13.
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.  相似文献   

14.
Recently, cell-based replicon systems for hepatitis C virus (HCV), in which the nonstructural proteins stably replicate subgenomic viral RNA in Huh7 cells, were developed. To date, one limitation of using these replicon systems to advance drug discovery is the inability of other genotypic derivatives, beyond those of two distinct strains of genotype 1b (HCV-N and Con1), to stably replicate in Huh7 cells. In this report, we evaluated a series of replicon genotype 1a-1b chimeras, as well as a complete genotype 1a replicon clone. A subgenomic replicon construct containing only type 1a sequences failed to generate stable colonies in Huh7 cells even after repeated attempts. Furthermore, addition of an NS5A adaptive mutation (S2204I) which enhances type 1b replicon efficiency was insufficient to confer replication to the wild-type 1a replicon. This subgenomic replicon was subsequently found to be inefficiently translated in Huh7 cells compared to a type 1b replicon, and the attenuation of translation mapped to the N-terminal region of NS3. Therefore, to ensure efficient translation and thereby support replication of the 1a genome, the coding sequence for first 75 residues from type 1a were replaced with the type 1b (strain Con 1) NS3 coding sequence. Although nonstructural proteins were expressed at lower levels with this replicon than with type 1b and although the amount of viral RNA was also severalfold lower (150 copies of positive-strand RNA per cell), the replicon stably replicated in Huh7 cells. Notwithstanding this difference, the ratio of positive- to negative-strand RNA of 26 was similar to that found with the type 1b replicon. Similar results were found for a 1b replicon expressing the type 1a RNA-dependent RNA polymerase. These 1a hybrid replicons maintained sensitivity to alpha interferon (IFN-alpha), albeit with an eightfold-higher 50% inhibitory concentration than type 1b replicons. Evidence is provided herein to confirm that this differential response to IFN-alpha may be attributed directly to the type 1a polymerase.  相似文献   

15.
Cyclosporine (CsA) and its derivatives potently suppress hepatitis C virus (HCV) replication. Recently, CsA-resistant HCV replicons have been identified in vitro. We examined the dependence of the wild-type and CsA-resistant replicons on various cyclophilins for replication. A strong correlation between CsA resistance and reduced dependency on cyclophilin A (CyPA) for replication was identified. Silencing of CyPB or CyPC expression had no significant effect on replication, whereas various forms of small interfering RNA (siRNA) directed at CyPA inhibited HCV replication of wild-type but not CsA-resistant replicons. The efficiency of a particular siRNA in suppressing CyPA expression was correlated with its potency in inhibiting HCV replication, and expression of an siRNA-resistant CyPA cDNA rescued replication. In addition, an anti-CyPA antibody blocked replication of the wild-type but not the resistant replicon in an in vitro replication assay. Depletion of CyPA alone in the CsA-resistant replicon cells eliminated CsA resistance, indicating that CyPA is the chief mediator of the observed CsA resistance. The dependency on CyPA for replication was observed for both genotype (GT) 1a and 1b replicons as well as a GT 2a infectious virus. An interaction between CyPA and HCV RNA as well as the viral polymerase that is sensitive to CsA treatment in wild-type but not in resistant replicons was detected. These findings reveal the molecular mechanism of CsA resistance and identify CyPA as a critical cellular cofactor for HCV replication and infection.  相似文献   

16.
Studies of the Hepatitis C virus (HCV) replication cycle have been made possible with the development of subgenomic selectable RNAs that replicate autonomously in cultured cells. In these replicons the region encoding the HCV structural proteins was replaced by the neomycin phosphotransferase gene, allowing the selection of transfected cells that support high-level replication of these RNAs. Subsequent analyses revealed that, within selected cells, HCV RNAs had acquired adaptive mutations that increased the efficiency of colony formation by an unknown mechanism. Using a panel of replicons that differed in their degrees of cell culture adaptation, in this study we show that adaptive mutations enhance RNA replication. Transient-transfection assays that did not require selection of transfected cells demonstrated a clear correlation between the level of adaptation and RNA replication. The highest replication level was found with an adapted replicon carrying two amino acid substitutions located in NS3 and one in NS5A that acted synergistically. In contrast, the nonadapted RNA replicated only transiently and at a low level. The correlation between the efficiency of colony formation and RNA replication was corroborated with replicons in which the selectable marker gene was replaced by the gene encoding firefly luciferase. Upon transfection of naive Huh-7 cells, the levels of luciferase activity directly reflected the replication efficiencies of the various replicon RNAs. These results show that cell culture-adaptive mutations enhance HCV RNA replication.  相似文献   

17.
Effect of alpha interferon on the hepatitis C virus replicon   总被引:17,自引:0,他引:17       下载免费PDF全文
Guo JT  Bichko VV  Seeger C 《Journal of virology》2001,75(18):8516-8523
Chronic hepatitis C virus (HCV) infections can be cured only in a fraction of patients treated with alpha interferon (IFN-alpha) and ribavirin combination therapy. The mechanism of the IFN-alpha response against HCV is not understood, but evidence for a role for viral nonstructural protein 5A (NS5A) in IFN resistance has been provided. To elucidate the mechanism by which NS5A and possibly other viral proteins inhibit the cellular antiviral program, we have constructed a subgenomic replicon from a known infectious HCV clone and demonstrated that it has an approximately 1,000-fold-higher transduction efficiency than previously used subgenomes. We found that IFN-alpha reduced replication of HCV subgenomic replicons approximately 10-fold. The estimated half-life of viral RNA in the presence of the cytokine was about 12 h. HCV replication was sensitive to IFN-alpha independently of whether the replicon expressed an NS5A protein associated with sensitivity or resistance to the cytokine. Furthermore, our results indicated that HCV replicons can persist in Huh7 cells in the presence of high concentrations of IFN-alpha. Finally, under our conditions, selection for IFN-alpha-resistant variants did not occur.  相似文献   

18.
The hepatitis C virus (HCV) encodes a large polyprotein; therefore, all viral proteins are produced in equimolar amounts regardless of their function. The aim of our study was to determine the ratio of nonstructural proteins to RNA that is required for HCV RNA replication. We analyzed Huh-7 cells harboring full-length HCV genomes or subgenomic replicons and found in all cases a >1,000-fold excess of HCV proteins over positive- and negative-strand RNA. To examine whether all nonstructural protein copies are involved in RNA synthesis, we isolated active HCV replication complexes from replicon cells and examined them for their content of viral RNA and proteins before and after treatment with protease and/or nuclease. In vitro replicase activity, as well as almost the entire negative- and positive-strand RNA, was resistant to nuclease treatment, whereas <5% of the nonstructural proteins were protected from protease digest but accounted for the full in vitro replicase activity. In consequence, only a minor fraction of the HCV nonstructural proteins was actively involved in RNA synthesis at a given time point but, due to the high amounts present in replicon cells, still representing a huge excess compared to the viral RNA. Based on the comparison of nuclease-resistant viral RNA to protease-resistant viral proteins, we estimate that an active HCV replicase complex consists of one negative-strand RNA, two to ten positive-strand RNAs, and several hundred nonstructural protein copies, which might be required as structural components of the vesicular compartments that are the site of HCV replication.  相似文献   

19.
20.
《FEBS letters》2014,588(9):1813-1820
To identify the novel genes involved in lipid metabolism and lipid droplet formation that may play important roles in Hepatitis C virus (HCV) propagation, we have screened the small interfering RNA library using cell culture derived HCV (HCVcc)-infected cells. We selected and characterized the gene encoding farnesyl-diphosphate farnesyltransferase 1 (FDFT1). siRNA-mediated knockdown of FDFT1 impaired HCV replication in both subgenomic replicon and HCVcc infected cells. Moreover, YM-53601, an inhibitor of FDFT1 enzyme activity, abrogated HCV propagation. HCV infection increased FDFT1 protein level but not FDFT1 mRNA level. These results suggest that HCV may modulate FDFT1 protein level to facilitate its own propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号