首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of absolute temperature (T), ionic strength (μ), and pH on the polymerization of tobacco mosaic virus protein from the 4 S form (A) to the 20 S form (D) were investigated by the method of sedimentation velocity. The loading concentration in grams per liter (C) was determined at which a just-detectable concentration (β) of 20 S material appeared. It was demonstrated experimentally that under the conditions employed herein, an equilibrium concentration of 20 S material was achieved in 3 h at the temperature of the experiment and that 20 S material dissociated again in 4 h or less to 4 S material either upon lowering the temperature or upon dilution. Thus, the use of thermodynamic equations for equilibrium processes was shown to be valid. The equation used to interpret the results, log (C?β) = constant + (ΔH12.3RT) + (ΔW1el2.3RT) ? K′ + ζpH, was derived from three separate models of the process, the only difference being in the anatomy of the constant; thus, the method of analysis is essentially independent of the model. ΔH1 and ΔW1el are the enthalpy and the change in electrical work per mole of A protein (the trimer of the polypeptide chain), Ks is the salting-out constant on the ionic strength basis, ζ is the number of moles of hydrogen ion bound per mole of A protein in the polymerization, and R is the gas constant. The three models leading to this equation are: a simple 11th-order equilibrium between A1 (the trimer of the polypeptide chain) and D, either the double disk or the double spiral of approximately the same molecular weight, designated model A; a second model, designated B, in which A1 was assumed to be in equilibrium with D at the same time that it is in equilibrium with A2, A3, etc., dimers and trimers, etc., of A1 in an isodesmic system; and a phase-separation model, designated model C, in which A protein is treated as a soluble material in equilibrium with D, considered as an insoluble phase. From electrical work theory, ΔWel1/T was shown to be essentially independent of T; therefore, in experiments at constant μ and constant pH the equation of log (C ? β) versus 1/T is linear with a slope of ΔH1/2.3R. The results fit such an equation over nearly a 20 °C-temperature range with a single value of ΔH1 of +32 kcal/mol A1. Results obtained when T and pH were held constant but μ was varied did not fit a straight line, which shows that more than simple salting-out is involved. When the effect of ionic strength on the electrical work contribution was considered in addition to salting-out, the data were interpreted to indicate a value of ΔW1el of 1.22 kcal/mol A1 at pH 6.7 and a value of 4.93 for Ks. When μ and T were held constant but pH was varied, and when allowance was made for the effect of pH changes on the electrical work contribution, a value of 1.1 was found for ζ. This means that something like 1.1 mol of hydrogen ion must be bound per mole of A1 protein in the formation of D. When this is added to the small amount of hydrogen ion bound per A1 before polymerization, at the pH values used, it turned out that for D to be formed, 1.5 H+ ions must be bound per A1 or 0.5 per protein polypeptide chain. This amounts to 1 H+ ion per polypeptide chain for half of the protein units, presumably those in one but not the other layer of the double disk or turn of the double spiral. When polymerization goes beyond the D stage, as shown by previously published data, additional H+ ions are bound. Simultaneous osmotic pressure studies and sedimentation studies were carried out, in both cases as a function of loading concentration C. These results were in complete disagreement with models A and C but agreed reasonably well with model B. The sedimentation studies permitted evaluation of the constant, β, to be 0.33 g/liter.  相似文献   

2.
A method for calculating the rate constant (KA1A2) for the oxidation of the primary electron acceptor (A1) by the secondary one (A2) in the photosynthetic electron transport chain of purple bacteria is proposed.The method is based on the analysis of the dark recovery kinetics of reaction centre bacteriochlorophyll (P) following its oxidation by a short single laser pulse at a high oxidation-reduction potential of the medium. It is shown that in Ectothiorhodospira shaposhnikovii there is little difference in the value of KA1A2 obtained by this method from that measured by the method of Parson ((1969) Biochim. Biophys. Acta 189, 384–396), namely: (4.5±1.4) · 103s?1 and (6.9±1.2) · 103 s?1, respectively.The proposed method has also been used for the estimation of the KA1A2 value in chromatophores of Rhodospirillum rubrum deprived of constitutive electron donors which are capable of reducing P+ at a rate exceeding this for the transfer of electron from A1 to A2. The method of Parson cannot be used in this case. The value of KA1A2 has been found to be (2.7±0.8) · 103 s?1.The activation energies for the A1 to A2 electron transfer have also been determined. They are 12.4 kcal/mol and 9.9 kcal/mol for E. shaposhnikovii and R. rubrum, respectively.  相似文献   

3.
The isoelectric points of the blood group A1, A2 and B gene-associated glycosyltransferases in human ovarian cyst fluids were found by isoelectric focusing to be in the pH range 9.5–10. The A1 and B transferases in serum had isoelectric points similar to those of the enzymes in cyst fluids but A2 transferases in serum had considerably lower isoelectric points, in the pH range 6–7. The difference in the pI values of the A1 and A2 transferases in the serum of a donor of the genotype A1A2 enabled the two enzymes to be preparatively separated by the isoelectric focusing technique. The dissimilarity in the pI values of the A2 transferases in ovarian cyst fluids and serum samples indicates that the isoelectric point arises from a post-translational modification of the enzyme protein.  相似文献   

4.
A new type of (reduced) point average molecular weight A1, is described. Several interesting properties are developed: (i) A1 = reduced weight average molecular weight over the whole cell, Awo A1 (meniscus) = Aw (meniscus); (iii) A1 (zero concentration) = reduced number average molecular weight, An (meniscus). In addition, its usefulness in extracting the meniscus concentration, J(a), and in examining heterogeneous systems such as mucus glycoproteins, are discussed. The evaluation and application of A1 requires only simple computational facilities, without the use for large-scale multiple data acquisition and recycling techniques.  相似文献   

5.
A ferredoxin from the thermophilic archaebacterium, Thermoplasmaacidophilum, is supposed to contain two (4Fe-4S) active centers; one center could be linked by four cysteine residues to the protein and the other bonded with three cysteines and an unknown group. This ferredoxin has been crystallized by salting-out against 2.3 m-ammonium sulfate solution. The space group is P21212 with cell dimensions of a = 59.20 A?, b = 52.77 A? and c = 41.28 A?. Four molecules pack in the unit cell with Vm = 2.03 A?3/dalton.  相似文献   

6.
The blood group A1 gene-specified α-3-N-acetyl-D-galactosaminyl-transferase in human plasma, when concentrated by adsorption onto group O red cell ghosts or Sepharose 4B, catalyses the transfer of D-galactose in α-linkage to low-molecular-weight H-active acceptors. The product synthesised with 2′-fucosyllactose is chromatographically indistinguishable from the blood group B-active tetrasaccharide, Galα1→3[Fucα1→2]Galβ1→4Glc. The optimum pH for the transfer of D-galactose by the A1-transferase is 7. At this pH the Vmax for the transfer of N-acetyl-D-galactosamine is about 300 times higher than that for the transfer of D-galactose. These results indicate that an A1-transferase can, under centain conditions, synthesise B determinant structures.  相似文献   

7.
The association constant, KA, for myosin subfragment-1 binding to actin was measured as a function of ionic strength [KCl, LiCl, and tetramethylammonium chloride (TMAC)]and temperature by the method of time-resolved fluorescence depolarization. The following thermodynamic values were obtained from solutions of 0.20 × 10?6m S-1, 1.00 × 10?6m actin in 0.15 m KCl, pH 7.0, at 25 °C: ΔG ° = ?39 ± 1 kJ M?1, ΔH0 = 44 ± 2 kJ M?1 and ΔS0 = 0.28 ± 0.01 kJ M?10K?1. For measurements in KCl (0.05 to 0.60 m), In Ka = ?8.36 (KCl)12. Thus, the binding is endothermic and strongly inhibited by high ionic strength. When KCl was replaced by LiCl or TMAC the ionic effects on the binding were cation specific. The nature of actin-(S-1) binding in the rigor state is discussed in terms of these results.  相似文献   

8.
Proton inventory investigations of the hydrolysis N-acetylbenzotriazole at pH 3.0 (or the equivalent point on the pD rate profile) have been conducted at two different temperatures and at ionic strengths ranging from 0 to 3.0 M. The solvent deuterium isotope effects and proton inventories are remarkably similar over this wide range of conditions. The proton inventories suggest a cyclic transition state involving four protons contributing to the solvent deuterium isotope effect for the water-catalyzed hydrolysis. The hydrolysis data are described by the equation kn = ko (1 ? n + nπa1)4 with πa1 ~ 0.74, where ko is the observed first-order rate constant in protium oxide, n is the atom fraction of deuterium in the solvent, kn is the rate constant in a protium oxide-deuterium oxide mixture, and πa1 is the isotopic fractionation factor.  相似文献   

9.
A theory of complex dielectric constant (ε1) for the suspension of “multi-stratified” spherical particles is presented. Based on Maxwell's theory of interfacial polarization, we derive a general expression which correlates ε1 with the electrical and geometrical parameters of each stratum. It can be shown that such a “multi-stratified” system in general should give rise to multiple dielectric dispersions, the number of which corresponds to the number of interfaces lying between the successive shell phases. The conditions for a full number of different “unit” dispersions to occur are also discussed. As an example, a special case of the “double-shell” model consisting of a spherical core and three layers of concentric phases is solved numerically by using a set of parameter values pertinent to a lymphoma cell. In light of the characteristic behavior of ε1 thus revealed, we propose a scheme of procedure that applies to the determination of electrical parameters associated with the specific “double-shell” model.  相似文献   

10.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

11.
13C nuclear magnetic resonance (n.m.r.) spectral data for 13C reductively methylated N-terminal tryptic glycopeptides and for 13C reductively methylated N-terminal glyco-octapeptides derived from homozygous glycophorins AM and AN are presented. Their 13C chemical shift data are compared with the previously published 13C n.m.r. data for 13C reductively methylated homozygous glycophorins AM and AN in order to investigate the means of display of the MN blood determinants by these species. The pH dependence of the 13C resonances of Nα,N-[13C]dimethyl leucine of glyco-octapeptide AN and of Nα,N-[13C]dimethyl serine of glyco-octapepti AM indicated that only a slight structural perturbation occurs at the N-terminus when a large portion of the glycoprotein molecule is removed. However, one structural ‘state’ of 13C reductively methylated glycophorin AM is lost when the glyco-octapeptide AM is produced. The 13C resonance of Nα,N-[13C]dimethyl leucine of glycooctapeptide AN titrated with a pKa of 7.7 (Hill coefficient ~ 1). The 13C resonance of Nα,N-[13C]dimethyl serine, on the other hand, exhibited an unusual pH dependence, indicating the existence of some possible steric constraints or hydrogen bonding in this molecule. In comparison to the data obtained for 13C-labelled glycooctapeptide AM molecule, the pH dependence of the chemical shift of the 13C resonance of Nα,N-[13C]dimethyl serine of tripeptide tri-L-serine is also presented. Circular dichroism (c.d.) spectra indicated that the reductive methylation technique does not cause a large perturbation of the glycophorin A molecule.  相似文献   

12.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

13.
Acid dissociation constants of aqueous cyclohexaamylose (6-Cy) and cycloheptaamylose (7-Cy) have been determined at 10–47 and 25–55°C, respectively, by pH potentiometry. Standard enthalpies and entropies of dissociation derived from the temperature dependences of these pKa's are ΔH0 = 8.4 ± 0.3 kcal mol?1, ΔS0 = ?28. ± 1 cal mol?10K?1 for 6-Cy and ΔH0 = 10.0 ± 0.1 kcal mol?1, ΔS0 = ?22.4 ±0.3 cal mol?10K?1 for 7-Cy. Intrinsic 13C nmr resonance displacements of anionic 6- and 7-Cy were measured at 30°C in 5% D2O (vv). These results indicate that the dissociation of 6- and 7-Cy involves both C2 and C3 20-hydroxyl groups. The thermodynamic and nmr parameters are discussed in terms of interglucosyl hydrogen bonding.  相似文献   

14.
The structural changes accompanying the recently described sub-transition of hydrated dipalmitoylphosphatidylcholine (Chen, S.C., Sturtevant, J.M. and Gaffney, B.J. (1980) Proc. Natl. Acad. Sci. USA 77, 5060–5063) have been defined using X-ray diffraction methods. Following prolonged storage at ?4°C the usual Lβ′ gel form of hydrated dipalmitoylphosphatidylcholine (DPPC) is converted into a more ordered stable ‘crystal’ form. The bilayer periodicity is 59.1 Å and the most striking feature is the presence of a number of X-ray reflections in the wide angle region. The most prominent of these are a sharp reflection at 14.4A??1 and a broader reflection at 13.9A??1. This diffraction pattern is indicative of more ordered molecular and hydrocarbon chain packing modes in this low temperature ‘crystal’ bilayer form. At the sub-transition (Trmsub = 15–20°C) an increase in the bilayer periodicity occurs (d=63.6 A?) and a strong reflection at approx. 14.2A??1 with a shoulder at approx. 14.1A??1 is observed. This diffraction pattern is identical to that of the bilayer gel (Lβ′) form of hydrated DPPC. Thus, the sub-transition corresponds to a bilayer ‘crystal’ → bilayer Lβ′ gel structural rearrangement accompanied by a decrease in the lateral hydrocarbon chain interactions. Differential scanning calorimetry and X-ray diffraction show that on further heating the usual structural changes Lβ′ → Pβ′ and Pβ′ → Lα occur at the pre- and main transitions, at approx. 35°C and 41°C, respectively.  相似文献   

15.
Structural studies of homozygous glycophorin AM were undertaken by monitoring the 13C methyl resonances of 13C reductively methylated glycophorin AM (contains five N?,N-[13C]dimethyl Lys residues, and the N-terminal Nα,N-[13C]dimethyl Ser residues) in various forms of glycosylation. The results indicate that removal of the α-d-NeuAc residues does not affect the structure about the N-terminal Ser residue. However, removal of the fifteen O-linked oligosaccharide units results in a structural effect about the N-terminal Ser residue. Partial methylation experiments performed on native glycophorin AM and deglycosylated glycophorin AM indicate that methylation of the lysine residue(s) may influence the structure about the N-terminal Ser residue, especially in the case of deglycosylated AM.  相似文献   

16.
Using guanidinium and n-butylammonium cations (C+) as models for the positively charged side chains in arginine and lysine, we have determined the association constants with various oxyanions by potentiometric titration. For a dibasic acid, H2A, three association complexes may exist: K1M = [CHA][C+] [HA?]; K1D = [CA?][C+] [A2?]; K2D = [C2A][C+] [CA?]. For guanidinium ion and phosphate, K1M = 1.4, K1D = 2.6, and K2D = 5.1. The data for carboxylates indicate that the basicity of the oxyanion does not affect the association constant: acetate, pKa = 4.8, K1M = 0.37; formate, pKa = 3.8, K1M = 0.32; and chloroacetate, pKa = 2.9, K1M = 0.43, all with guanidinium ion. Association constants are also reported for carbonate, dimethylphosphinate, benzylphosphonate, and adenylate anions.  相似文献   

17.
ADP and Pi-loaded membrane vesicles from l-malate-grown Bacillus alcalophilus synthesized ATP upon energization with ascorbateN,N,N′,N′-tetramethyl-p-phenylenediamine. ATP synthesis occurred over a range of external pH from 6.0 to 11.0, under conditions in which the total protonmotive force Δ\?gmH+ was as low as ?30 mV. The phosphate potentials (ΔGp) were calculated to be 11 and 12 kcal/mol at pH 10.5 and 9.0, respectively, whereas the Δ\?gmH+ values in vesicles at these two pH values were quite different (?40 ± 20 mV at pH 10.5 and ?125 ± 20 mV at pH 9.0). ATP synthesis was inhibited by KCN, gramicidin, and by N,N′-dicyclohexylcarbodiimide. Inward translocation of protons, concomitant with ATP synthesis, was demonstrated using direct pH monitoring and fluorescence methods. No dependence upon the presence of Na+ or K+ was found. Thus, ATP synthesis in B. alcalophilus appears to involve a proton-translocating ATPase which functions at low Δ\?gmH+.  相似文献   

18.
Diffusion of histamine, theophylline and tryptamine through planar lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine plus cholesterol (1 : 1 mol ratio) in tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to nonionic and ionic species. Only the nonionic forms crossed the membrane at a significant rate. The membrane permeabilities to the nonionic species were: histamine, 3.5 · 10?5cm · s?1; theophylline, 2.9 · 10?4cm · s?1; and tryptamine, 1.8 · 10?1cm · s?1. Chemical reactions in the unstirred layers are important in the transport of tryptamine and theophylline, but not histamine. For example, as pH decreased from 10.0 to 7.5 the ratio of nonionic (B) to ionic (BH+) tryptamine decreased by 300-fold, but the total tryptamine permeability decreased only 3-fold. The relative insensitivity of the total tryptamine permeability to the ratio, [B]/[BH+], is due to the rapid interconversion of B and BH+ in the instirred layers. Our model describing diffusion and reaction in the unstirred layers can explain some ‘anomalous’ relationships between pH and weak acid/base transport through lipid bilayer and biological membranes.  相似文献   

19.
The kinetics of methemoglobin reduction by Fe(EDTA)2? have been studied and found to follow a second order rate law with k = 29.0 M?1 s?1 [25°C, μ = 0.2 M, pH 7.0 (phosphate)], ΔH3 = 5.5 ± 0.7 kcal/mol, and ΔS2= ?33 ± 2 e.u.. The electrostatics-corrected self-exchange rate constant (k11corr) for hemoglobin based on the Fe(EDTA)2? cross-reaction is 2.79×10?3M?1 s?1. This rate constant is compared with others reported for a water-soluble iron porphyrin and calculated from published data for the reactions of myoglobin and hemoglobin with Fe(EDTA)2? and Fe(CDTA)2?/?. The k11corr values for these systems range over ten orders of magnitude with heme ? myoglobin > hemoglobin.  相似文献   

20.
A quantitative model for the damping of oscillations of the semiquinone absorption after successive light flashes is presented. It is based on the equilibrium between the states QA?QB and QAQB?. A fit of the model to the experimental results obtained for reaction centers from Rhodopseudomonas sphaeroides gave a value of α = [QA?QB]([QA?QB] + [QAQB?]) = 0.065 ± 0.005 (T = 21°C, pH 8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号