首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy: Many paths to the same end   总被引:14,自引:0,他引:14  
Different mechanisms lead to the degradation of intracellular proteins in the lysosomal compartment. Activation of one autophagic pathway or another, under specific cellular conditions, plays an important role in the ability of the cell to adapt to environmental changes. Each form of autophagy has its own individual characteristics, but it also shares common steps and components with the others. This interdependence of the autophagic pathways confers to the lysosomal system, both specificity and flexibility on substrate degradation. We describe in this review some of the recent findings on the molecular basis and regulation for each of the different autophagic pathways. We also discuss the cellular consequences of their interdependent function. Malfunctioning of the autophagic systems has dramatic consequences, especially in non-dividing differentiated cells. Using the heart as an example of such cells, we analyze the relevance of autophagy in aging and cell death, as well as in different pathological conditions. (Mol Cell Biochem 263: 55–72, 2004)  相似文献   

2.
Three different types of autophagy-macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA)-contribute to degradation of intracellular components in lysosomes in mammalian cells. Although some level of basal macroautophagy and CMA activities has been described in different cell types and tissues, these two pathways are maximally activated under stress conditions. Activation of these two pathways is often sequential, suggesting the existence of some level of cross-talk between both stress-related autophagic pathways. In this work, we analyze the consequences of blockage of macroautophagy on CMA activity. Using mouse embryonic fibroblasts deficient in Atg5, an autophagy-related protein required for autophagosome formation, we have found that blockage of macroautophagy leads to up-regulation of CMA, even under basal conditions. Interestingly, different mechanisms contribute to the observed changes in CMA-related proteins and the consequent activation of CMA during basal and stress conditions in these macroautophagy-deficient cells. This work supports a direct cross-talk between these two forms of autophagy, and it identifies changes in the lysosomal compartment that underlie the basis for the communication between both autophagic pathways.  相似文献   

3.
Nixon RA  Yang DS  Lee JH 《Autophagy》2008,4(5):590-599
Neuronal survival requires continuous lysosomal turnover of cellular constituents delivered by autophagy and endocytosis. Primary lysosomal dysfunction in inherited congenital "lysosomal storage" disorders is well known to cause severe neurodegenerative phenotypes associated with accumulations of lysosomes and autophagic vacuoles (AVs). Recently, the number of inherited adult-onset neurodegenerative diseases caused by proteins that regulate protein sorting and degradation within the endocytic and autophagic pathways has grown considerably. In this Perspective, we classify a group of neurodegenerative diseases across the lifespan as disorders of lysosomal function, which feature extensive autophagic-endocytic-lysosomal neuropathology and may share mechanisms of neurodegeneration related to degradative failure and lysosomal destabilization. We highlight Alzheimer's disease as a disease within this group and discuss how each of the genes and other risk factors promoting this disease contribute to progressive lysosomal dysfunction and neuronal cell death.  相似文献   

4.
The major pathways for protein degradation are the proteasomal and lysosomal systems. Derangement of protein degradation causes the formation of intracellular inclusions, and apoptosis and is associated with several diseases. We utilized hepatocyte-derived cell lines to examine the consequences of the cytoplasmic hepatocyte Mallory-Denk body-like inclusions on organelle organization, autophagy and apoptosis, and tested the hypothesis that autophagy affects inclusion turnover. Proteasome inhibitors (PIs) generate keratin-containing Mallory-Denk body-like inclusions in cultured cells and cause reorganization of mitochondria and other organelles, autophagy and apoptosis. In cultured hepatoma cells, caspase inhibition blocks PI-induced apoptosis but not inclusion formation or autophagy activation. Autophagy induction by rapamycin decreases the extent of PI-induced inclusions and apoptosis in Huh7 and OUMS29 cells. Surprisingly, blocking of autophagy sequestration by 3 methyl adenine or beclin 1 siRNA, but not bafilomycin A1 inhibition of autophagic degradation, also inhibits inclusion formation in the tested cells. Therefore, autophagy can be upstream of apoptosis and may promote or alleviate inclusion formation in cell culture in a context-dependent manner via putative autophagy-associated molecular triggers. Manipulation of autophagy may offer a strategy to address the importance of inclusion formation and its significance in inclusion-associated diseases.  相似文献   

5.
Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stress-induced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.  相似文献   

6.
Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.  相似文献   

7.
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic‐lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.  相似文献   

8.
Degradation processes are important for optimal functioning of eukaryotic cells. The two major protein degradation pathways in eukaryotes are the ubiquitin–proteasome pathway and autophagy. This contribution focuses on autophagy. This process is important for survival of cells during nitrogen starvation conditions but also has a house keeping function in removing exhausted, redundant or unwanted cellular components. We present an overview of the molecular mechanism involved in three major autophagy pathways: chaperone mediated autophagy, microautophagy and macroautophagy. Various recent reports indicate that autophagy plays a crucial role in human health and disease. Examples are presented of lysosomal storage diseases and the role of autophagy in cancer, neurodegenerative diseases, defense against pathogens and cell death.  相似文献   

9.
Renal ischemia-reperfusion (I/R) injury is inevitable in transplantation, and it results in renal tubular epithelial cells undergoing cell death. We observed an increase in autophagosomes in the tubular epithelial cells of I/R-injured mouse models, and in biopsy specimens from human transplanted kidney. However, it remains unclear whether autophagy functions as a protective pathway, or contributes to I/R-induced cell death. Here, we employed the human renal proximal tubular epithelial cell line HK-2 in order to explore the role of autophagy under hypoxia (1% O2) or activation of reactive oxygen species (500 μM H2O2). When compared to normoxic conditions, 48 h of hypoxia slightly increased LC3-labeled autophagic vacuoles and markedly increased LAMP2-labeled lysosomes. We observed similar changes in the mouse IR-injury model. We then assessed autophagic generation and degradation by inhibiting the downstream lysosomal degradation of autophagic vacuoles using lysosomal protease inhibitor. We found that autophagosomes increased markedly under hypoxia in the presence of lysosomal protease inhibitors, thus suggesting that hypoxia induces high turnover of autophagic generation and degradation. Furthermore, inhibition of autophagy significantly inhibited H2O2-induced cell death. In conclusion, high turnover of autophagy may lead to autophagic cell death during I/R injury.  相似文献   

10.
Cellular degradative processes including proteasomal and vacuolar/lysosomal (autophagic) degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are organelles essential for respiration and oxidative energy production in aerobic cells; they are also required for multiple biosynthetic pathways. As such, mitochondrial homeostasis is very important for cell survival. We review the evidence regarding the possible mechanisms for mitochondrial degradation. Increasingly, the evidence suggests autophagy plays a central role in the degradation of mitochondria. How mitochondria might be specifically selected for autophagy (mitophagy) remains an open question, although some evidence suggests that, under certain circumstances, in mammalian cells the Mitochondrial Permeability Transition (MPT) plays a role in initiation of the process. As more is learned about the functioning of autophagy as a degradation process, the greater the appreciation we are developing concerning its role in the control of mitochondrial degradation.  相似文献   

11.
《Autophagy》2013,9(1):4-9
Cellular degradative processes including proteasomal and vacuolar / lysosomal (autophagic) degradation, as well as the activity of proteases (both cytosolic and mitochondrial), provide for a continuous turnover of damaged and obsolete macromolecules and organelles. Mitochondria are organelles essential for respiration and oxidative energy production in aerobic cells; they are also required for multiple biosynthetic pathways. As such, mitochondrial homeostasis is very important for cell survival. We review the evidence regarding the possible mechanisms for mitochondrial degradation. Increasingly, the evidence suggests autophagy plays a central role in the degradation of mitochondria. How mitochondria might be specifically selected for autophagy (mitophagy) remains an open question, although some evidence suggests that, under certain circumstances, in mammalian cells the Mitochondrial Permeability Transition (MPT) plays a role in initiation of the process. As more is learned about the functioning of autophagy as a degradation process, the greater the appreciation we are developing concerning its role in the control of mitochondrial degradation.  相似文献   

12.
The lysosome is a key subcellular organelle that receives and degrades macromolecules from endocytic, secretory and autophagic pathways. Lysosomal function is thus critical for an efficient autophagic process. However, the molecular mechanisms mediating lysosomal function upon autophagic induction are largely unknown. Our laboratory recently discovered that upon autophagy activation, the lysosome is activated, and this functional activation is dependent on MTORC1 suppression, suggesting that MTORC1 exerts a suppressive effect on lysosomal function. Therefore, data from our study demonstrate that MTORC1 exerts a dual inhibitory effect on autophagy, blocking autophagy not only at the initiation stage via suppression of the ULK1 complex, but also at the degradation stage via inhibition of lysosomal function. We think that understanding the negative regulatory effect of MTORC1 on lysosomal function expands the functional scope of MTORC1 in autophagy regulation, and offers new clues for developing novel interventional strategies in autophagy- and lysosome-related diseases.  相似文献   

13.
Macroautophagy (hereafter called ‘autophagy’) is a cellular process for degrading and recycling cellular constituents, and for maintenance of cell function. Autophagy initiates via vesicular engulfment of cellular materials and culminates in their degradation via lysosomal hydrolases, with the whole process often being termed ‘autophagic flux’. Autophagy is a multi-step pathway requiring the interplay of numerous scaffolding and signalling molecules. In particular, orthologs of the family of ∼30 autophagy-regulating (Atg) proteins that were first characterised in yeast play essential roles in the initiation and processing of autophagic vesicles in mammalian cells. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a master regulator of the canonical autophagic response of cells to nutrient starvation. In addition, AMP-activated protein kinase (AMPK), which is a key sensor of cellular energy status, can trigger autophagy by inhibiting mTOR, or by phosphorylating other downstream targets. Calcium (Ca2+) has been implicated in autophagic signalling pathways encompassing both mTOR and AMPK, as well as in autophagy seemingly not involving these kinases. Numerous studies have shown that cytosolic Ca2+ signals can trigger autophagy. Moreover, introduction of an exogenous chelator to prevent cytosolic Ca2+ signals inhibits autophagy in response to many different stimuli, with suggestions that buffering Ca2+ affects not only the triggering of autophagy, but also proximal and distal steps during autophagic flux. Observations such as these indicate that Ca2+ plays an essential role as a pro-autophagic signal. However, cellular Ca2+ signals can exert anti-autophagic actions too. For example, Ca2+ channel blockers induce autophagy due to the loss of autophagy-suppressing Ca2+ signals. In addition, the sequestration of Ca2+ by mitochondria during physiological signalling appears necessary to maintain cellular bio-energetics, thereby suppressing AMPK-dependent autophagy. This article attempts to provide an integrated overview of the evidence for the proposed roles of various Ca2+ signals, Ca2+ channels and Ca2+ sources in controlling autophagic flux.  相似文献   

14.
Kondo Y  Kondo S 《Autophagy》2006,2(2):85-90
Autophagy is a dynamic process of protein degradation, which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of nonapoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes--survival or death--depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

15.
Butler D  Nixon RA  Bahr BA 《Autophagy》2006,2(3):234-237
Intracellular protein degradation decreases with age, altering the important balance between protein synthesis and breakdown. Slowly, protein accumulation events increase causing axonopathy, synaptic deterioration, and subsequent cell death. As toxic species accumulate, autophagy-lysosomal protein degradation pathways are activated. Responses include autophagic vacuoles that degrade damaged cellular components and long-lived proteins, as well as enhanced levels of lysosomal hydrolases. Although such changes correlate with neuronal atrophy in age-related neurodegenerative disorders and in related models of protein accumulation, the autophagic/lysosomal responses appear to be compensatory reactions. Recent studies indicate that protein oligomerization/ aggregation induces autophagy and activates lysosomal protein degradation in an attempt to clear toxic accumulations. Such compensatory responses may delay cell death and account for the gradual nature of protein deposition pathology that can extend over months/years in model systems and years/decades in the human diseases. Correspondingly, enhancement of compensatory pathways shifts the balance from pathogenesis to protection. Positive modulation of protein degradation processes represents a strategy to promote clearance of toxic accumulations and to slow the synaptopathogenesis and associated cognitive decline in aging-related dementias.  相似文献   

16.
《Autophagy》2013,9(2):85-90
Autophagy is a dynamic process of protein degradation which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of non-apoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes—survival or death—depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN, and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

17.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

18.
《Autophagy》2013,9(3):397-407
Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved.  相似文献   

19.
Autophagy is a fundamental salvage pathway that encapsulates damaged cellular components and delivers them to the lysosome for degradation and recycling. This pathway usually conducts a protective cellular response to nutrient deprivation and various stresses. Tumor cells live with metabolic stress and use autophagy for their survival during tumor progression and metastasis. Genomic instability in tumor cells may result in amplification of crucial gene(s) for autophagy and upregulate the autophagic pathway. We demonstrate that a cancer-associated gene, LAPTM4B, plays an important role in lysosomal functions and is critical for autophagic maturation. Its amplification and overexpression promote autophagy, which renders tumor cells resistant to metabolic and genotoxic stress and results in more rapid tumor growth.  相似文献   

20.
Autophagy is a central lysosomal degradation pathway required for maintaining cellular homeostasis and its dysfunction is associated with numerous human diseases. To identify players in autophagy, we tested w1200 chemically induced mutations on the X chromosome in Drosophila fat body clones and discovered that shibire(shi) plays an essential role in starvation-induced autophagy. shi encodes a dynamin protein required for fission of clathrin-coated vesicles from the plasma membrane during endocytosis. We showed that Shi is dispensable for autophagy initiation and autophagosomeelysosome fusion, but required for lysosomal/autolysosomal acidification. We also showed that other endocytic core machinery components like clathrin and AP2 play similar but not identical roles in regulating autophagy and lysosomal function as dynamin. Previous studies suggested that dynamin directly regulates autophagosome formation and autophagic lysosome reformation(ALR) through its excision activity. Here, we provide evidence that dynamin also regulates autophagy indirectly by regulating lysosomal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号