首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)-acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01-10 microM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 microM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100mg/kg body weight by intraperitoneal injection) significantly increased the AUC(0-10h) values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t(1/2beta) values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.  相似文献   

2.
CPT-11 (irinotecan) and mainly its metabolite SN-38 are potent antitumor derivatives of camptothecin. As the active lactone forms of both CPT-11 and SN-38 exist in pH-dependent equilibrium with their respective less potent open-ring hydroxy acid species, the simultaneous monitoring of both forms of both compounds is relevant. CPT-11 and SN-38 derivatives have quite different fluorescence responses. In order to avoid any compromise on the wavelength setting, we developed chromatographic conditions allowing simple automated wavelength setting changes which have been prevented using existing methods involving conventional C18 columns. This was achieved by means of a Symmetry C18 column combined to a gradient elution program using acetonitrile and 75 mM ammonium acetate plus 7.5 mM tetrabutylammonium bromide at pH 6.4. The developed conditions allowed an elution order suitable for a simple automated wavelength change in respect to reliable peak integration. CPT-11 and SN-38 derivatives were detected at λex=362 nm/λem=425 nm and λex=375 nm/λem=560 nm, respectively. The developed method allowed the detection of amounts less than 3 pg of each derivative injected on column. The method was successfully applied to pharmacokinetic and toxicokinetic studies in rat and dog.  相似文献   

3.
In the course of our study to determine the cross-sensitivity between CPT-11 and its active metabolite, SN-38, we found a SN-38-resistant human pancreatic tumor cell line, QGP-1N, which shows sensitivity to CPT-11. The IC50 of SN-38 was 152 times greater for QGP-1N than for SUIT-2, also a human pancreatic tumor cell line, whose IC50 of CPT-11 was similar to that for QGP-1N. The uptakes of CPT-11 and SN-38 and the intracellular conversion of CPT-11 to SN-38 could not explain the difference in sensitivity. DNA synthesis of QGP-1N cells was inhibited by CPT-11 which did not affect that of SUIT-2, while SN-38 inhibited the DNA synthesis of SUIT-2 at lower concentrations than that of QGP-1N. The inhibition test of topoisomerase I catalytic activity by CPT-11 or SN-38 revealed no difference in the biochemical properties of the topoisomerase I enzymes to the compounds between these two cell lines. These results indicate that CPT-11 should have its own inhibitory effect on DNA synthesis through a yet unknown mechanism in QGP-1N cells, although SN-38 plays an essential role in the antitumor activity of CPT-11 in SUIT-2 cells. In some cases, the antitumor effect of CPT-11 might be consequent not only on SN-38 but also on CPT-11 itself.  相似文献   

4.
Novel hexacyclic camptothecin analogs containing cyclic amidine, urea, or thiourea moiety were designed and synthesized based on the proposed 3D-structure of the topoisomerase I (Topo I)/DNA/camptothecin ternary complex. The analogs were prepared from 9-nitrocamptothecin via 7,9-diaminocamptothecin derivatives as a key intermediate. Among them, 7c exhibited in vivo antitumor activities superior to CPT-11 in human cancer xenograft models in mice at their maximum tolerated doses though its in vitro antiproliferative activity was comparable to SN-38 against corresponding cell lines.  相似文献   

5.
Irinotecan (CPT-11), a camptothecin analog, is metabolized to SN-38, an active topoisomerase I inhibitor, and inactive metabolites, including APC and SN-38 glucuronide (SN-38G). A high-performance liquid chromatographic assay method to simultaneously measure the lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in human plasma was developed. Chromatography was accomplished with a reversed-phase C(8) column and fluorescence detection. A gradient mobile phase system was used. The buffer for mobile phase A consisted of 0.75 M ammonium acetate, 5 mM tetrabutylammonium phosphate (pH 6.0), and acetonitrile (86:14, v/v). The buffer for mobile phase B was identical to mobile phase A with the exception of the concentration (50:50, v/v). Precipitation of plasma proteins was performed with cold methanol. The linear range of detection of the lactone and carboxylate forms of SN-38, SN-38G, and APC was 2-25 ng/ml, and 5-300 ng/ml for CPT-11. The limit of quantitation for the analytes ranged from 0.5 to 5 ng/ml. Analysis of patients' plasma samples obtained before and after CPT-11 administration showed that the assay is suitable for measuring lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in clinical studies.  相似文献   

6.
We established a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the camptothecin (CPT) derivative, irinotecan hydrochloride (CPT-11) and its metabolites, 7-ethyl-10-hydroxycamptothecin (SN-38) and SN-38 glucuronide (SN-38G) in rat plasma with a fully automated on-line solid-phase extraction system, PROSPEKT. Plasma samples were pretreated with 0.146 M H3PO4 to inactivate carboxylesterase and β-glucuronidase in rat plasma, and added with the internal standard solution (0.146 M H3PO4 containing 1 μg/ml CPT) and then analyzed. The method was validated for CPT-11 (5 to 25 000 ng/ml), SN-38 (5 to 2500 ng/ml) and SN-38G (2.5 to 500 ng/ml). This method enabled the determination of many samples within a relatively short time with easy sample preparation. It also had four advantages compared with conventional determination methods, i.e. automation of a complicated sample preparation, time-saving by the simultaneous determination of three compounds, the direct determination of SN-38G, and the small amount of plasma required for the determination.  相似文献   

7.
Abstract

Polyethyleneglycol (PEG) -coated liposomal CPT-11 (PEG-LCPT(11)) was prepared and its pharmaceutical usefulness was examined. These liposomes, plain liposomal CPT-11 (PLCPT(11)) and PEG-LCPT(11), were composed of dimyristoylphosphatidylcholine, cholesterol, and dimyristoylphosphatidylglycerol (10 : 10 : 6, mol/mol) with or without PEG. The mean particle diameters were both about 1 60 nm. The trapping efficiencies were approximately 90%. In a distribution study, CDFl mice were injected with CPT-11 solution (CPT(11)sol), PLCPT(11) and PEG-LCPT(11) at a dose of 10 mg/kg (i.v.). Concentrations in each tissue of CPT-11 and SN-38, the active metabolite of CPT-11, were determined. After the administration, CPT-11 and SN-38 concentrations in the blood increased by liposomal encapsulation (liposomalization), and the circulation time in the blood was prolonged further by PEG-modification of the liposomes (PEGylation). In the liver, PLCPT(11) was rapidly taken up by the reticuloendothelial system (RES), and the uptake was avoided by PEGylation. Tumor accumulations of CPT-11 and SN-38 were accompanied by an increase in antitumor activity of CPT-11 by liposomalization. Thus, the prolongation of the circulation time in the blood by liposomalization and the avoidance of the RES uptake by PEGylation caused passive targeting of the tumor, with a resulting increase in the antitumor activity of CPT-11.  相似文献   

8.
Irinotecan (CPT-11) is an anticancer agent widely employed in the treatment of colorectal carcinoma. A simple, rapid and sensitive high-performance liquid chromatographic method for the simultaneous determination of CPT-11 and its metabolite SN-38 in plasma, and their preliminary clinical pharmacokinetics are described. Both deproteinisation of plasma specimens (100 μl) and addition of the internal standard, camptothecin (CPT), are achieved by incorporating to samples 100 μl of a solution of CPT (1 μg/ml) in acetonitrile–1 mM orthophosphoric acid (90:10); 200 μl of this acidified acetonitrile solution, drug-free, is also added to accomplish complete deproteinisation: this procedure reduces sample preparation time to a minimum. After deproteinisation, samples are treated with potassium dihydrogenphosphate (0.1 M) and injected into a Nucleosil C18 (5 μm, 250×4.0 mm) column. Mobile phase consists of potassium dihydrogenphosphate (0.1 M)–acetonitrile (67:33), at a flow-rate of 1 ml/min. CPT-11, SN-38 and CPT are detected by fluorescence with excitation wavelength set at 228 nm and emission wavelengths of CPT-11, SN-38 and CPT fixed, respectively, at 450, 543 and 433 nm. The limits of quantitation for CPT-11 and SN-38 are 1.0 and 0.5 ng/ml, respectively. This method shows good precision: the within day relative standard deviation (RSD) for CPT-11 (1–10 000 ng/ml) is 5.17% (range 2.15–8.27%) and for SN-38 (0.5–400 ng/ml) is 4.33% (1.32–7.78%); the between-day RSDs for CPT-11 and SN-38, in the previously described ranges, are 6.82% (5.03–10.8%) and 4.94% (2.09–9.30%), respectively. Using this assay, plasma pharmacokinetics of CPT-11, SN-38 and its glucuronidated form, SN-38G, have been determined in one patient receiving 200 mg/m2 of CPT-11 as a 90 min intravenous infusion. The peak plasma concentration of CPT-11 at the end of the infusion is 3800 ng/ml. Plasma decay is biphasic with a terminal half-life of 11.6 h. The volume of distribution at steady state (Vss) is 203 l/m2, and the total body clearance (Cl) is 14.8 l/h·m2. The maximum concentrations of SN-38 and SN-38G reach 28.9 and 151 ng/ml, respectively.  相似文献   

9.
Influence of hydroxyurea (HU) on the antitumor effect of irinotecan hydrochloride (CPT-11) was investigated in ICR male mice transplanted with sarcoma 180 cells (S-180). A single dose of CPT-11 (100 mg/kg) was injected at various times after a single dose of HU (300 mg/kg). The relative tumor weight varied significantly depending on the timing of CPT-11 injection after HU injection (P < 0.01). The higher antitumor effect of CPT-11 was observed when DNA synthesis of S-180 cells increased (20 hr), and the lower effect was observed when the DNA synthesis decreased (0 hr). The loss of body weight also varied significantly depending on the timing of CPT-11 injection after HU injection (P < 0.01). The toxicity of CPT-11 was higher when the inhibitory effect of HU on DNA synthesis of bone marrow cells was stronger (15 hr), and the lower toxicity was observed when the inhibitory effect was not observed (0 hr). The plasma SN-38 concentration at 2 hr after CPT-11 injection was higher at 20 hr after HU injection than at 0 hr after HU injection. The difference in plasma esterase activity between 0 hr and 20 hr after HU injection was regarded as the mechanism underlying the dosing time-dependent difference of the SN-38 concentration. These experiments suggest that HU can produce a different phase of cell cycle between tumor cells and normal cells. This leads to increase the antitumor effect of CPT-11 without increasing the adverse effect of the drug. It is essential to consider the dosing time in the two-drug combination therapy.  相似文献   

10.
CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.  相似文献   

11.
A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile-50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm x 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9-108.3% for CPT-11 in culture media and 94.3-107.2% for CPT-11 in cell lysates; and 87.7-106.8% for SN-38 in culture media and 90.1-105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.  相似文献   

12.
A series of 7-cycloalkylcamptothecin derivatives were synthesized from camptothecin with two methods. Their biological activities in vitro were evaluated with sulforhodamine-B (SRB) method on four types of human tumor cell lines A549/ATCC, HT29, NCI-H460 and HL60. Most of these camptothecin analogues show higher antitumor activity than the reference compounds SN-38 and Topotecan, with the IC50 values low to nM level. Structure–activity relationship studies of these compounds mostly match the conclusion we achieved before from quantitative structure–activity relationship (QSAR) research.  相似文献   

13.
A series of E-ring gamma-lactone camptothecin derivatives were synthesized by semi-synthesis via a three-step domino reaction. Their biological activity was evaluated on two types of human tumor cell lines A549 and HT-29 with sulforhodamine-B (SRB) method. The antitumor activity of these compounds was lower than SN-38, only compound 12c was found to be close to the activity of Topotecan. The structure-activity relationship (SAR) of these analogs was studied and discussed.  相似文献   

14.
Zhang Z  Yao J 《AAPS PharmSciTech》2012,13(3):802-810
The purpose of this study was to investigate the in vivo distribution and antitumor activity of irinotecan (camptothecin (CPT)-11)-loaded folate-targeted liposome (F-Lip) in tumor-bearing mice following i.v. administration. Folate–poly(ethylene glycol)–distearoylphosphatidylcholine (FA–PEG–DSPE) was synthesized by amide reaction of DSPE–PEG–NH2 and FA. F-Lip modified by FA–PEG–DSPE was prepared by an ammonium sulfate gradient. The mean particle size and entrapment efficiency of F-Lip with negative charge were 197.8 ± 4.58 nm and 91.39 ± 2.34 %, respectively. The distributions of CPT-11 and SN-38 in the tumor after i.v. administration of F-Lip, CPT-11-loaded liposomes (C-Lip), and CPT-11 injection (C-Inj) were far greater with the F-Lip group in comparison to the C-Inj and C-Lip, which might contribute to folate-meditated targeting uptake by the folate receptor on the surface of the tumor cells. The uptake of CPT-11 in the liver and rectum for two liposome groups were all markedly increased as compared to the C-Inj. Moreover, F-Lip exhibited a dose-dependent tumor growth inhibition and superior anticancer activity to C-Lip and C-Inj after i.v. administration. It also showed no significant body weight loss and much lower toxicity on the center immune organs. Therefore, F-Lip may be presented as potential candidates for tumor targeting drug delivery.KEY WORDS: cancer targeting, CPT-11, folate, liposomes, SN-38  相似文献   

15.
The intestinal transport of irinotecan (CPT-11) and its active metabolite, SN-38, has been previously reported (K. Kobayashi et al., Int. J. Cancer, 83 (1999) 491-496). In the present study, the effect of the two major primary bile acids, cholic acid (CA) and taurocholic acid (TCA), on the uptake of CPT-11 and SN-38 by hamster intestinal epithelial cells was investigated. These two bile acids at concentrations up to 200 microM did not directly alter the cellular uptake of CPT-11 and SN-38. However, under physiologically acidic intestinal pH conditions, micelle formation induced by 20 mM TCA significantly reduced the cellular uptake of CPT-11 and SN-38 by 60% and 80%, respectively.  相似文献   

16.
Analysis of camptothecins in biologic media is hampered by chemical hydrolysis of the parent lactone (form I) to an inactive hydroxy acid (form II). A solid-phase extraction (SPE) method utilizing C2-bonded silica particles (100 mg, 1 ml) is presented for simultaneous determination of forms I and II of camptothecin (CPT) and SN-38 (active metabolite of clinically used CPT-11) in culture media and cell lysates. A new HPLC separation is described that efficiently resolves all four compounds employing gradient elution with 10 mM ammonium acetate, increasing methanol (20-80% over 15 min), and a 15-cm by 3-mm Symmetry Shield (RP8) column. Components were detected by fluorescence at an excitation wavelength of 380 nm and emission wavelength of 423 nm. Lactones were shown to be unstable at alkaline pH and hydroxy acids unstable at alkaline pH while the following conditions preserved the chemical equilibrium in specimens: samples kept on ice, final pH of eluates 7.4, autosampler temperature 4 degrees C, and analysis cycle <4 h. Quantitative recovery of lactones was achieved from RPMI culture medium over a wide concentration range (93.5-111.6% for 1-400 ng/ml) although greater variability was noted with the hydroxy acids (59.6-110.3%, 1-400 ng/ml). Limit of quantitation (precision and accuracy <20%) was 0.2 ng/ml for CPT lactone, 0.5 ng/ml for SN-38 lactone, and 2 ng/ml for the two hydroxy acids. The method was applied to quantitate the accumulation of SN-38 and CPT (form I and II) in HT29 and HCT116 human colon cancer cells.  相似文献   

17.
The aim of the present study was to investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on the pharmacokinetics of irinotecan (CPT-11) and its metabolite SN-38. EGCG was potentially used to modulate the ATPase activity of P-glycoprotein (P-gp). Experimental Sprague-Dawley rats were treated with EGCG (20mg/kg, i.v.) 10min before CPT-11 (10mg/kg, i.v.) administration, whereas the control group received CPT-11 (10mg/kg, i.v.) only. The biological samples were prepared by the protein precipitation and detected by HPLC-fluorescence detection which provided a good separation of CPT-11 and SN-38 within 10min. The pharmacokinetic data indicate that the area under the plasma concentration-time curves (AUC) of CPT-11 and SN-38 were increased by 57.7 and 18.3%, and AUC in bile were decreased by 15.8 and 46.8%, respectively, for the group pretreated with EGCG. The blood to bile distribution ratio (AUC(bile)/AUC(blood)) was significantly reduced after group coadministration of EGCG, it can be seen that the bile efflux transport system of CPT-11 and SN-38 may be markedly reduced by the treatment of EGCG which plays the role of P-gp inhibitor. In conclusion, EGCG was found to inhibit the transport of CPT-11 and SN-38 into the biliary elimination and their half-lives in plasma could be substantially prolonged. Based on the food-drug interaction, persons taking daily nutritional supplements should be warned of this interaction possibility.  相似文献   

18.
A series of hexacyclic camptothecin derivatives were synthesized to test for antitumor activity as topoisomerase I inhibitor. The strategy of synthesis was used for the formation of additional furan and dihydrofuran rings fused with 9- and 10-positions of camptothecin. All of the hexacyclic camptothecins were assayed for cytotoxicity against four human tumor cell lines, HL60, BEL-7402, HCT-116, and HeLa, and showed very impressive cytotoxicity activity in vitro. Enzyme activity of the hexacyclic camptothecins was evaluated, being equal or superior to that of SN-38. The stability of four compounds was assessed in human plasma. Two of these compounds were chosen to test for antitumor activity in vivo against Sarcoma-180. The results suggested that additional furan and dihydrofuran rings could improve the antitumor activity in vitro and vivo, though the stability of the lactone ring did not increase.  相似文献   

19.
Combined antitumor activity of CPT-11 and 5-fluorouracil (5-FU) was evaluated in a human cultured cell line derived from lung cancer. After 24 h culture with SN-38 followed by 5-FU 24 h, synergistic effect was observed in the cell line. In addition, the antitumor effect of this combination was studied in in vivo experiments using Donryu rat with Yoshida sarcoma cells. CPT-11 and 5-FU synergistically inhibited tumor growth. There was no significant increase of toxicity as assessed by the body weights. These results might support for the combination with 5-FU and CPT-11 in a chemotherapy for cancer.  相似文献   

20.
A simplified method for the simultaneous determination of irinotecan (CPT-11, I) and its active metabolite (SN-38, II) in human plasma by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Following the addition of the internal standard (I.S.) camptothecin, the drugs were extracted from plasma using methanol. The average extraction efficiencies were 87% for I, 90% for II and 90% for the I.S. Chromatography was performed using a TSK gel ODS-80Ts column, monitored at 556 nm (excitation wavelength, 380 nm) and the mobile phase was acetonitrile-50 mM disodium hydrogen phosphate (28:72) containing 5 mM heptanesulphonate (pH 3.0). The linear quantitation ranges for I and II were 30–2000 and 1–30 ng/ml, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号