首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Integrase is the only viral protein necessary for integration of retroviral DNA into chromosomal DNA of the host cell. Biochemical analysis of human immunodeficiency virus type 1 (HIV-1) integrase with purified protein and synthetic DNA substrates has revealed extensive information regarding the mechanism of action of the enzyme, as well as identification of critical residues and functional domains. Since in vitro reactions are carried out in the absence of other viral proteins and they analyze strand transfer of only one end of the donor substrate, they do not define completely the process of integration as it occurs during the course of viral infection. In an effort to further understand the role of integrase during viral infection, we initially constructed a panel of 24 HIV-1 mutants with specific alanine substitutions throughout the integrase coding region and analyzed them in a human T-cell line infection. Of these mutant viruses, 12 were capable of sustained viral replication, 11 were replication defective, and 1 was temperature sensitive for viral growth. The replication defective viruses express and correctly process the integrase and Gag proteins. Using this panel of mutants and an additional set of 18 mutant viruses, we identified nine amino acids which, when replaced with alanine, destroy integrase activity. Although none of the replication-defective mutants are able to integrate into the host genome, a subset of them with alterations in the catalytic triad are capable of Tat-mediated transactivation of an indicator gene linked to the viral long terminal repeat promoter. We present evidence that integration of the HIV-1 provirus is essential not only for productive infection of T cells but also for virus passage in both cultured peripheral blood lymphocytes and macrophage cells.  相似文献   

3.
4.
Holmes-Son ML  Chow SA 《Journal of virology》2000,74(24):11548-11556
Purified fusion proteins made up of a retroviral integrase and a sequence-specific DNA-binding protein have been tested in in vitro assays for their ability to direct integration into specific target sites. To determine whether these fusion proteins can be incorporated into human immunodeficiency virus type 1 (HIV-1) and are functional to mediate integration, we used an in trans approach to deliver various integrase-LexA proteins to an integrase-defective virus containing an integrase mutation at aspartate residue 64. Integrase-LexA, integrase-LexA DNA-binding domain, or N- or C-terminally truncated integrase-LexA proteins were fused to the HIV-1 accessory protein, Vpr. Coexpression of the Vpr fusion proteins and an integrase-defective HIV-1 molecular clone by a producer cell line resulted in efficient incorporation of the fusion protein into the integrase-mutated virus. In addition, each of these viruses was infectious and capable of performing integration, as determined by two independent cellular assays that measure reporter gene expression. With the exception of the N-terminally truncated integrase fused to LexA, which was at about 1%, all of the fusion proteins restored integration to a similar level, at 17 to 24% of that of the wild-type virus. The low level observed with the N-terminally truncated integrase fused to LexA is consistent with previous results implying that the N terminus of integrase is involved in multiple steps of the retroviral life cycle. These data indicate that the integrase-fusion proteins retain catalytic function in the integrase-mutated viruses and demonstrate the feasibility of incorporating integrase fusion proteins into HIV-1 for the development of site-directed retroviral vectors.  相似文献   

5.
Here we describe methods developed based on systematic yeast two-hybrid screenings that allowed us to identify several binding partners of HIV-1 integrase. We have developed an efficient strategy to perform large comprehensive screenings with different highly complex cDNA libraries derived both random- and oligo-dT primed reactions. A very efficient mating procedure was used for screening in yeast, allowing genetic saturation of positive clones. This importantly leads with confidence to the determination of the regions within the participating proteins responsible for the interactions. Several additional tools were used that allowed us to assess the specificity of the interactions detected, including rebound screens with cellular co-factors as baits performed against a library of random fragments of HIV-1 proviral DNA. For some of the identified cell factors, we have generated and characterized loss of affinity mutants of integrase, which, when combined with viral functional assays, validated the involvement of human lens epithelium-derived growth factor (LEDGF/p75) in the integration step of the HIV-1 replication cycle. All tolled, our studies identified LEDGF/p75, Transportin-SR2 (TNPO3), von Hippel–Lindau binding protein 1 (VBP1), and sucrose non-fermenting 5 (SNF5) as cellular binding partners of HIV-1 integrase.  相似文献   

6.

Background

Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.

Results

We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.

Conclusions

This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.  相似文献   

7.
Integration of retroviral DNA into the host chromosome requires the integrase protein (IN). We overexpressed the IN proteins of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) in E. coli and purified them. Both proteins were found to specifically cut two nucleotides off the ends of linear viral DNA, and to integrate viral DNA into target DNA. This demonstrates that HIV IN is the only protein required for integration of HIV DNA. Although the two types of IN proteins have only 53% amino acid sequence similarity, they act with equal efficiency on both type 1 and type 2 viral DNA. Binding of IN to DNA was tested: purified IN does not bind very specifically to viral DNA ends. Nevertheless, only viral DNA ends are cleaved and integrated. We interpret this as follows: in vitro quick aspecific binding to DNA is followed by slow specific cutting and integration. IN can not find viral DNA ends in the presence of an excess of aspecific DNA; in vivo this is not required since the IN protein is in constant proximity of viral DNA in the viral core particle.  相似文献   

8.
Integration of human immunodeficiency virus type 1 (HIV-1) proviral DNA in the nuclear genome is catalyzed by the retroviral integrase (IN). In addition to IN, viral and cellular proteins associated in the high-molecular-weight preintegration complex have been suggested to be involved in this process. In an attempt to define host factors interacting with IN, we used an in vitro system to identify cellular proteins in interaction with HIV-1 IN. The yeast Saccharomyces cerevisiae was chosen since (i) its complete sequence has been established and the primary structure of all the putative proteins from this eucaryote has been deduced, (ii) there is a significant degree of homology between human and yeast proteins, and (iii) we have previously shown that the expression of HIV-1 IN in yeast induces a lethal phenotype. Strong evidences suggest that this lethality is linked to IN activity in infected human cells where integration requires the cleavage of genomic DNA. Using IN-affinity chromatography we identified four yeast proteins interacting with HIV-1 IN, including the yeast chaperonin yHSP60, which is the counterpart of human hHSP60. Yeast lethality induced by HIV-1 IN was abolished when a mutated HSP60 was coexpressed, therefore suggesting that both proteins interact in vivo. Besides interacting with HIV-1 IN, the hHSP60 was able to stimulate the in vitro processing and joining activities of IN and protected this enzyme from thermal denaturation. In addition, the functional human HSP60-HSP10 complex in the presence of ATP was able to recognize the HIV-1 IN as a substrate.  相似文献   

9.
Like all viruses, HIV-1 requires cellular host factors for replication. The mechanisms for production of progeny virions involving these host factors, however, are not fully understood. To better understand these mechanisms, we used a yeast (Saccharomyces cerevisiae) genetic screen to identify mutant strains in which HIV-1 Gag targeting to the plasma membrane was aberrant. Of the 917 mutants identified, we selected 14 mutants whose missing genes had single orthologous counterparts in human and tested them for Gag-induced viruslike particle (VLP) release in yeast cells. We found that the Vps18 and Mon2 proteins were important for HIV-1 Gag-induced VLP release in yeast. In eukaryote cells, these host proteins are highly conserved and function in protein trafficking. Depletion of hVps18 or hMon2 reduced the efficient production of infectious HIV-1 virions in human cells. Our data suggest that these cellular factors play an important role in the efficient production of infectious HIV-1 virion particles.  相似文献   

10.
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.  相似文献   

11.
Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retroviral integrase enzymes to sequence-specific DNA-binding domains and investigated target site selection by the resulting proteins. In a previous study, we purified and analyzed a fusion protein composed of human immunodeficiency virus integrase linked to the DNA-binding domain of lambda repressor. This fusion could direct selective integration in vitro into target DNA containing lambda repressor binding sites. Here we investigate the properties of a fusion integrase in the context of a human immunodeficiency virus provirus. We used a fusion of integrase to the DNA binding domain of the zinc finger protein zif268 (IN-zif). Initially we found that the fusion was highly detrimental to replication as measured by the multinuclear activation of a galactosidase indicator (MAGI) assay for infected centers. However, we found that viruses containing mixtures of wild-type integrase and IN-zif were infectious. We prepared preintegration complexes from cells infected with these viruses and found that such complexes directed increased integration near zif268 recognition sites.  相似文献   

12.

Background

An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase (HAT) p300.

Results

In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3'-end processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process.

Conclusions

The results presented here further demonstrate the relevance of IN post-translational modification by acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses require integration of a double-stranded DNA copy of the RNA genome into the host cell chromosome for productive infection. The viral enzyme, integrase, catalyzes the integration of retroviral DNA and represents an attractive target for developing antiretroviral agents. We identified several derivatives of dicaffeoylquinic acids (DCQAs) that inhibit HIV-1 replication in tissue culture and catalytic activities of HIV-1 integrase in vitro. The specific step at which DCQAs inhibit the integration in vitro and the mechanism of inhibition were examined in the present study. Titration experiments with different concentrations of HIV-1 integrase or DNA substrate found that the effect of DCQAs was exerted on the enzyme and not the DNA. In addition to HIV-1, DCQAs also inhibited the in vitro activities of MLV integrase and truncated variants of feline immunodeficiency virus integrase, suggesting that these compounds interacted with the central core domain of integrase. The inhibition on retroviral integrases was relatively specific, and DCQAs had no effect on several other DNA-modifying enzymes and phosphoryltransferases. Kinetic analysis and dialysis experiments showed that the inhibition of integrase by DCQAs was irreversible. The inhibition did not require the presence of a divalent cation and was unaffected by preassembling integrase onto viral DNA. The results suggest that the irreversible inhibition by DCQAs on integrase is directed toward conserved amino acid residues in the central core domain during catalysis.  相似文献   

14.
In order to establish a productive infection, a retrovirus must integrate the cDNA of its RNA genome into the host cell chromosome. While this critical process makes retroviruses an attractive vector for gene delivery, the nonspecific nature of integration presents inherent hazards and variations in gene expression. One approach to alleviating the problem involves fusing retroviral integrase to a sequence-specific DNA-binding protein that targets a defined chromosomal site. We prepared proteins consisting of wild-type or truncated human immunodeficiency virus type 1 (HIV-1) integrase fused to the synthetic polydactyl zinc finger protein E2C. The purified fusion proteins bound specifically to the 18-bp E2C recognition sequence as analyzed by DNase I footprinting. The fusion proteins were catalytically active and biased integration of retroviral DNA near the E2C-binding site in vitro. The distribution was asymmetric, and the major integration hot spots were localized within a 20-bp region upstream of the C-rich strand of the E2C recognition sequence. Integration bias was not observed with target plasmids bearing a mutated E2C-binding site or when HIV-1 integrase and E2C were added to the reaction as separate proteins. The results demonstrate that the integrase-E2C fusion proteins offer an efficient approach and a versatile framework for directing the integration of retroviral DNA into a predetermined DNA site.  相似文献   

15.
16.
17.
HIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes. In this simple eukaryotic model, integrase is necessary and sufficient for the insertion of a DNA containing viral LTRs into the genome, thereby allowing the study of the isolated integration step independently of other viral mechanisms. Furthermore, the yeast system was used to identify cellular mechanisms involved in the integration step and allowed us to show the role of homologous recombination systems. We demonstrated physical interactions between HIV-1 IN and RAD51 protein and showed that HIV-1 integrase activity could be inhibited both in the cell and in vitro by RAD51 protein. Our data allowed the identification of RAD51 as a novel in vitro IN cofactor able to down regulate the activity of this retroviral enzyme, thereby acting as a potential cellular restriction factor to HIV infection.  相似文献   

18.
The stable insertion of the retroviral genome into the host chromosomes requires the association between integration complexes and cellular chromatin via the interaction between retroviral integrase and the nucleosomal target DNA. This final association may involve the chromatin-binding properties of both the retroviral integrase and its cellular cofactor LEDGF/p75. To investigate this and better understand the LEDGF/p75-mediated chromatin tethering of HIV-1 integrase, we used a combination of biochemical and chromosome-binding assays. Our study revealed that retroviral integrase has an intrinsic ability to bind and recognize specific chromatin regions in metaphase even in the absence of its cofactor. Furthermore, this integrase chromatin-binding property was modulated by the interaction with its cofactor LEDGF/p75, which redirected the enzyme to alternative chromosome regions. We also better determined the chromatin features recognized by each partner alone or within the functional intasome, as well as the chronology of efficient LEDGF/p75-mediated targeting of HIV-1 integrase to chromatin. Our data support a new chromatin-binding function of integrase acting in concert with LEDGF/p75 for the optimal association with the nucleosomal substrate. This work also provides additional information about the behavior of retroviral integration complexes in metaphase chromatin and the mechanism of action of LEDGF/p75 in this specific context.  相似文献   

19.

Background

Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies.

Methods

In this study, the NP from a swine IAV was cloned into a yeast two-hybrid “bait” vector for expression of a yeast Gal4 binding domain (BD)-NP fusion protein. This “bait” was used to screen a Y2H human HeLa cell “prey” library which consisted of human proteins fused to the Gal4 protein’s activation domain (AD). The interaction of “bait” and “prey” proteins resulted in activation of reporter genes.

Results

Seventeen positive bait-prey interactions were isolated in yeast. All of the “prey” isolated also interact in yeast with a NP “bait” cloned from a human IAV strain. Isolation and sequence analysis of the cDNAs encoding the human prey proteins revealed ten different human proteins. These host proteins are involved in various host cell processes and structures, including purine biosynthesis (PAICS), metabolism (ACOT13), proteasome (PA28B), DNA-binding (MSANTD3), cytoskeleton (CKAP5), potassium channel formation (KCTD9), zinc transporter function (SLC30A9), Na+/K+ ATPase function (ATP1B1), and RNA splicing (TRA2B).

Conclusions

Ten human proteins were identified as interacting with IAV NP in a Y2H screen. Some of these human proteins were reported in previous screens aimed at elucidating host proteins relevant to specific viral life cycle processes such as replication. This study extends previous findings by suggesting a mechanism by which these host proteins associate with the IAV, i.e., physical interaction with NP. Furthermore, this study revealed novel host protein-NP interactions in yeast.
  相似文献   

20.
The human immunodeficiency virus (HIV) integrase (IN) protein mediates an essential step in the retroviral lifecycle, the integration of viral DNA into human DNA. A DNA-binding domain of HIV IN has previously been identified in the C-terminal part of the protein. We tested truncated proteins of the C-terminal region of HIV-1 IN for DNA binding activity in two different assays: UV-crosslinking and southwestern blot analysis. We found that a polypeptide fragment of 50 amino acids (IN220-270) is sufficient for DNA binding. In contrast to full-length IN protein, this domain is soluble under low salt conditions. DNA binding of IN220-270 to both viral DNA and non-specific DNA occurs in an ion-independent fashion. Point mutations were introduced in 10 different amino acid residues of the DNA-binding domain of HIV-2 IN. Mutation of basic amino acid K264 results in strong reduction of DNA binding and of integrase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号