首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During neurogenesis in Drosophila, groups of ectodermal cells are endowed with the capacity to become neuronal precursors. The Notch signaling pathway is required to limit the neuronal potential to a single cell within each group. Loss of genes of the Notch signaling pathway results in a neurogenic phenotype: hyperplasia of the nervous system accompanied by a parallel loss of epidermis. Echinoid (Ed), a cell membrane associated Immunoglobulin C2-type protein, has previously been shown to be a negative regulator of the EGFR pathway during eye and wing vein development. Using in situ hybridization and antibody staining of whole-mount embryos, we show that Ed has a dynamic expression pattern during embryogenesis. Embryonic lethal alleles of ed reveal a role of Ed in restricting neurogenic potential during embryonic neurogenesis, and result in a phenotype similar to that of loss-of-function mutations of Notch signaling pathway genes. In this process Ed interacts closely with the Notch signaling pathway. Loss of ed suppresses the loss of neuronal elements caused by ectopic activation of the Notch signaling pathway. Using a temperature-sensitive allele of ed we show, furthermore, that Ed is required to suppress sensory bristles and for proper wing vein specification during adult development. In these processes also, ed acts in close concert with genes of the Notch signaling pathway. Thus the extra wing vein phenotype of ed is enhanced upon reduction of Delta (Dl) or Enhancer of split [E(spl)] proteins. Overexpression of the membrane-tethered extracellular region of Ed results in a dominant-negative phenotype. This phenotype is suppressed by overexpression of E(spl)m7 and enhanced by overexpression of Dl. Our work establishes a role of Ed during embryonic nervous system development, as well as adult sensory bristle specification and shows that Ed interacts synergistically with the Notch signaling pathway.  相似文献   

2.
D. F. Lyman  B. Yedvobnick 《Genetics》1995,141(4):1491-1505
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.  相似文献   

3.
J. V. Price  E. D. Savenye  D. Lum    A. Breitkreutz 《Genetics》1997,147(3):1139-1153
The Drosophila epidermal growth factor receptor (EGFR) is a key component of a complex signaling pathway that participates in multiple developmental processes. We have performed an F(1) screen for mutations that cause dominant enhancement of wing vein phenotypes associated with mutations in Egfr. With this screen, we have recovered mutations in Hairless (H), vein, groucho (gro), and three apparently novel loci. All of the E(Egfr)s we have identified show dominant interactions in transheterozygous combinations with each other and with alleles of N or Su(H), suggesting that they are involved in cross-talk between the N and EGFR signaling pathways. Further examination of the phenotypic interactions between Egfr, H, and gro revealed that reductions in Egfr activity enhanced both the bristle loss associated with H mutations, and the bristle hyperplasia and ocellar hypertrophy associated with gro mutations. Double mutant combinations of Egfr and gro hypomorphic alleles led to the formation of ectopic compound eyes in a dosage sensitive manner. Our findings suggest that these E(Egfr)s represent links between the Egfr and Notch signaling pathways, and that Egfr activity can either promote or suppress Notch signaling, depending on its developmental context.  相似文献   

4.
5.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.  相似文献   

6.
Genes of the ventrolateral group in Drosophila are dedicated to developmental regulation of Egfr signaling in multiple processes including wing vein development. Among these genes, Egfr encodes the Drosophila EGF-Receptor, spitz (spi) and vein (vn) encode EGF-related ligands, and rhomboid (rho) and Star (S) encode membrane proteins. In this study, we show that rho-mediated hyperactivation of the EGFR/MAPK pathway is required for vein formation throughout late larval and early pupal development. Consistent with this observation, rho activity is necessary and sufficient to activate MAPK in vein primordium during late larval and early pupal stages. Epistasis studies using a dominant negative version of Egfr and a ligand-independent activated form of Egfr suggest that rho acts upstream of the receptor. We show that rho and S function in a common aspect of vein development since loss-of-function clones of rho or S result in nearly identical non-autonomous loss-of-vein phenotypes. Furthermore, mis-expression of rho and S in wild-type and mutant backgrounds reveals that these genes function in a synergistic and co-dependent manner. In contrast, spi does not play an essential role in the wing. These data indicate that rho and S act in concert, but independently of spi, to promote vein development through the EGFR/MAPK signaling pathway.  相似文献   

7.
The phenotypes and genetic interactions associated with mutations in the Drosophila mastermind (mam) gene have implicated it as a component of the Notch signaling pathway. However, its function and site of action within many tissues requiring Notch signaling have not been thoroughly investigated. To address these questions, we have constructed truncated versions of the Mam protein that elicit dominant phenotypes when expressed in imaginal tissues under GAL4-UAS regulation. By several criteria, these effects appear to phenocopy loss of function for the Notch pathway. When expressed in the notum, truncated Mam results in failure of lateral inhibition within proneural clusters and perturbations in cell fate specification within the sensory organ precursor cell lineage. Expression in the wing is associated with vein thickening and margin defects, including nicking and bristle loss. The truncation-associated wing margin phenotypes are modified by mutations in Notch and Wg pathway genes and are correlated with depressed expression of wg, cut, and vg. These data support the idea that Mam truncations have lost key effector domains and therefore behave as dominant-negative proteins. Coexpression of Delta or an activated form of Notch suppresses the effects of the Mam truncation, suggesting that Mam can function upstream of ligand-receptor interaction in the Notch pathway. This system should prove useful for the investigation of the role of Mam within the Notch pathway.  相似文献   

8.
9.
10.
11.
The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5-7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.  相似文献   

12.
To determine the roles of Drosophila transglutaminase-A (dTG-A), we examined a phenotype induced through ectopic expression of dTG-A. Overexpression of dTG-A in the wing imaginal disc induced an extra wing crossvein phenotype. This phenotype was suppressed by crossing with epidermal growth factor receptor (Egfr) signaling pathway mutant flies. These results indicate that this phenotype, induced by dTG-A, is related to enhancement of the Egfr signaling pathway.  相似文献   

13.
To determine the roles of Drosophila transglutaminase-A (dTG-A), we examined a phenotype induced through ectopic expression of dTG-A. Overexpression of dTG-A in the wing imaginal disc induced an extra wing crossvein phenotype. This phenotype was suppressed by crossing with epidermal growth factor receptor (Egfr) signaling pathway mutant flies. These results indicate that this phenotype, induced by dTG-A, is related to enhancement of the Egfr signaling pathway.  相似文献   

14.
Eye development in Drosophila involves the Notch signaling pathway at several consecutive steps. At first, Notch signaling is required for stable expression of the proneural gene atonal (ato), thereby maintaining neural potential of the cells. Second, in a process of lateral inhibition, Notch signaling is necessary to confine neural commitment to individual photoreceptor founder cells. Later on, the successive addition of cells to maturing ommatidia is under Notch control. In contrast to previous assumptions, the recessive Notch allele split (Nspl) involves specifically loss of the early proneural Notch activity in the eye, which is in agreement with bristle defects as well. As a result, fewer cells gain neural potential and fewer ommatidia are founded. Enhancement of this phenotype by the dominant mutation Enhancer of split [E(spl)D] happens within the remaining proneural cells, in which Ato expression is abolished. In line with genetic data, this process occurs primarily at the protein level due to altered protein-protein interactions between the aberrant E(spl)D and proneural proteins. Nspl is the first Notch mutation known to specifically affect Notch inductive processes during eye development.  相似文献   

15.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

16.
17.
18.
19.
In Drosophila, imaginal wing discs, Wg and Dpp, play important roles in the development of sensory organs. These secreted growth factors govern the positions of sensory bristles by regulating the expression of achaete-scute (ac-sc), genes affecting neuronal precursor cell identity. Earlier studies have shown that Dally, an integral membrane, heparan sulfate-modified proteoglycan, affects both Wg and Dpp signaling in a tissue-specific manner. Here, we show that dally is required for the development of specific chemosensory and mechanosensory organs in the wing and notum. dally enhancer trap is expressed at the anteroposterior and dorsoventral boundaries of the wing pouch, under the control of hh and wg, respectively. dally affects the specification of proneural clusters for dally-sensitive bristles and shows genetic interactions with either wg or dpp signaling components for distinct sensory bristles. These findings suggest that dally can differentially regulate Wg- or Dpp-directed patterning during sensory organ assembly. We have also determined that, for pSA, a bristle on the lateral notum, dally shows genetic interactions with iroquois complex (IRO-C), a gene complex affecting ac-sc expression. Consistent with this interaction, dally mutants show markedly reduced expression of an iro::lacZ reporter. These findings establish dally as an important regulator of sensory organ formation via Wg- and Dpp-mediated specification of proneural clusters.  相似文献   

20.
Kim SY  Kim JY  Malik S  Son W  Kwon KS  Kim C 《PloS one》2012,7(4):e34016
In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE)-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号