首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Coffee leaf rust due to Hemileia vastatrix is one of the most serious diseases in Arabica coffee (Coffea arabica). A resistance gene (SH3) has been transferred from C. liberica into C. arabica. The present work aimed at developing sequence-characterized genetic markers for leaf rust resistance. Linkage between markers and leaf rust resistance was tested by analysing two segregating populations, one F2 population of 101 individuals and one backcross (BC2) population of 43 individuals, derived from a cross between a susceptible and a SH3-introgressed resistant genotype. A total of ten sequence-characterized genetic markers closely associated with the SH3 leaf rust resistance gene were generated. These included simple sequence repeats (SSR) markers, sequence-characterised amplified regions (SCAR) markers resulting from the conversion of amplified fragment length polymorphism (AFLP) markers previously identified and SCAR markers derived from end-sequences of bacterial artificial chromosome (BAC) clones. Those BAC clones were identified by screening of C. arabica genomic BAC library using a cloned AFLP-marker as probe. The markers we developed are easy and inexpensive to run, requiring one PCR step followed by gel separation. While three markers were linked in repulsion with the SH3 gene, seven markers were clustered in coupling around the SH3 gene. Notably, two markers appeared to co-segregate perfectly with the SH3 gene in the two plant populations analyzed. These markers are suitable for marker-assisted selection for leaf rust resistance and to facilitate pyramiding of the SH3 gene with other leaf rust resistance genes.  相似文献   

2.
Coffee leaf rust caused by the fungus Hemileia vastatrix causes considerable economic losses for coffee producers. Although agrochemical products can provide sufficient disease control, the use of resistant cultivars is a safer alternative. This resistance may be constrained by one or a few genetic factors, mainly those found in material originating from interspecific hybrids. In this study, the genetic analysis of an F 2 population consisting of 224 plants derived from a crossing of Híbrido de Timor UFV 427-15 (resistant) with Catuaí Amarelo IAC 30 (susceptible) showed that a dominant gene confers the resistance of coffee to race II of H. vastatrix. From a genetic map saturated with 25 amplified fragment length polymorphism (AFLP) markers linked to the resistance gene, we developed a high-density genetic map with six sequence-characterized amplified region (SCAR) markers delimiting a chromosomal region of 9.45 cM and flanking the dominant gene at 0.7 and 0.9 cM. This is the first saturated and high-density genetic map obtained from this region containing the resistance gene. The results of this study are of great importance for the introduction of molecular markers for marker-assisted selection; they will also facilitate studies related to the cloning, structure, and function of race-specific genes involved in the resistance of coffee trees to H. vastatrix.  相似文献   

3.
The Pucciniomycete fungus Hemileia vastatrix causes leaf rust on coffee trees. The pathogen is responsible for considerable yield losses in susceptible coffee cultivars if appropriate management strategies are not implemented. Rapid spread and epidemics of rust fungi are usually associated with the emergence of new races of the pathogen that overcome resistance or with the emergence of more aggressive populations of the pathogen. In Brazil, coffee production is dominated by susceptible cultivars of Coffea arabica and Coffea canephora. We assessed aggressiveness in 46 populations of Hvastatrix from Minas Gerais and Espírito Santo, two of the most important coffee‐producing states in Brazil. We observed a significant difference in the incubation period between the populations from Minas Gerais and Espírito Santo when 183 single‐pustule isolates were inoculated onto Catuaí Vermelho IAC 44, a susceptible C. arabica cultivar. Variation in aggressiveness components was observed between and within localities. Isolates with longer incubation periods also tended to have longer latent periods, although there was only a low correlation between these two aggressiveness components (r2 = 0.34, P = 2.2 × 10?16). Low‐sporulating isolates also had significantly longer incubation and latent periods. The H. vastatrix population from Minas Gerais and Espírito Santo is structured by the formation of groups of individuals with differential level of aggressiveness. Our results indicate that the variation in aggressiveness of the Brazilian H. vastatrix population may be associated with the geographic coffee‐producing areas.  相似文献   

4.
Selecting superior genotypes is facilitated by marker-assisted selection (MAS), which is particularly suitable for transferring disease resistance alleles because it nullifies environmental effects and allows selection of resistant individuals in the absence of the pathogen or race, enabling preventive breeding. Molecular markers linked to two major genes (SH3 and SH?), conferring resistance to coffee rust, and those linked to the Ck-1 gene, conferring resistance to coffee berry disease (CBD), have previously been identified. These markers were validated and used in a progeny of crosses between Indian selections with Coffea arabica cultivars. Eleven resistant individuals homozygous for SH3 were identified by MAS. Of these, seven carry SH? from Híbrido de Timor and the gene introduced from Coffea liberica (SH3). SH? was characterized as derived from Coffea canephora. Thus, it was possible to identify C. arabica genotypes carrying important genes for rust resistance introgressed from other coffee species. MAS also allowed identification of sources of CBD resistance for use in preventive breeding for resistance to this serious disease. Using two validated molecular markers, two coffee plants carrying Ck-1 were identified: the UFV 328-60 genotype (F2) was resistant and homozygous based on both molecular markers but exhibited no markers related to SH3 and SH?, and the UFV 317-12 genotype (F1) was resistant and homozygous but resistant and heterozygous based on CBD-Sat207 and CBD-Sat235, respectively. Along with possessing Ck-1, the latter carries SH?. Overall, plants carrying different genes for resistance to rust and CBD were identified. These plants are important sources for gene pyramiding in breeding programs aimed at multiple and durable resistance.  相似文献   

5.
One of the most important diseases of coffee plants is the coffee leaf rust fungus Hemileia vastatrix Berkeley and Broome (Uredinales). It can cause 30 % yield loss in some varieties of Coffea arabica (L.). Besides fungus, the coffee plants are attacked by phytophagous mites. The most common species is the coffee red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae). Predatory mites of the Phytoseiidae family are well-known for their potential to control herbivorous mites and insects, but they can also develop and reproduce on various other food sources, such as plant pathogenic fungi. In a field survey, we found Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) on the necrotic areas caused by the coffee leaf rust fungus during the reproductive phase of the pathogen. We therefore assessed the development, survivorship and reproduction of R. loxocheles feeding on coffee leaf rust fungus and measured predation and oviposition of this phytoseiid having coffee red mite as prey under laboratory conditions. The mite fed, survived, developed and reproduced successfully on this pathogen but it was not able to prey on O. ilicis. Survival and oviposition with only prey were the same as without food. This phytoseiid mite does not really use O. ilicis as food. It is suggested that R. loxocheles is one phytoseiid that uses fungi as a main food source.  相似文献   

6.
Susceptible coffee plants (Coffea arabica cv. ‘Mundo Novo’) treated with a suspension of Bacillus thuringiensis or with three of commercial products (Thuricide HD, Bactimos and Bactospeine PM) of B. thurngiensis were protected against a later inoculation with Hemileia vastatrix, the causal agent of coffee leaf rust. Thuricide HD was effective at concentrations from 5 to 20 mg/ml; at this concentration, protection reached 90 %, lasted for at least 5 weeks, and was systemic. Induced resistance was determined by the reduction of the average number of lesions per leaf in treated leaves when compared with non-treated controls. A decrease in lesion size as well as a delay in sporulation time were also observed in protected plants treated with Thuricide HD.  相似文献   

7.
New races of coffee rust are overcoming resistance genes available in germplasm and cultivated cultivars and bringing recently some coffee-producing countries in severe economic challenge. The objective of this study was to identify the genes that are linked to host resistance to the major coffee rust race II. In our study, we have identified and studied a segregating population that has a single monogenic resistant gene to coffee rust. Coffee leaves of parents, resistant, and susceptible genotypes of the F2 generation plants were inoculated with pathogen spores. A differential analysis was performed by combined cDNA-AFLP and bulk segregant analysis (BSA) in pooled samples collected 48 and 72 h postinoculation, increasing the selectiveness for differential gene expression. Of 108 differential expressed genes, between 33,000 gene fragments analyzed, 108 differential expressed genes were identified in resistant plants. About 20 and 22 % of these resistant-correlated genes are related to signaling and defense genes, respectively. Between signaling genes, the major subclass corresponds to receptor and resistant homolog genes, like nucleotide-binding site leucine-rich repeat (NBS-LRR), Pto-like, RLKs, Bger, and RGH1A, all not previously described in coffee rust responses. The second major subclass included kinases, where two mitogen-activated kinases (MAPK) are identified. Further gene expression analysis was performed for 21 selected genes by real-time PCR gene expression analysis at 0, 12, 24, 48, and 72 h postinoculation. The expression of genes involved in signaling and defense was higher at 24 and 72 h after inoculation, respectively. The NBS-LRR was the more differentially expressed gene between the signaling genes (four times more expressed in the resistant genotype), and thraumatin (PR5) was the more expressed between all genes (six times more expressed). Multivariate analysis reinforces the significance of the temporal separation of identified signaling and defense genes: early expression of signaling genes support the hypothesis that higher expression of the signaling components up regulates the defense genes identified. Additionally the increased gene expression of these two gene sets is associated with a single monogenic resistance trait to to leaf coffee rust in the interaction characterized here.  相似文献   

8.
Leaf rust caused by the fungus Hemileia vastatrix is the most devastating disease of arabica coffee (Coffea arabica). Therefore, developing leaf rust-resistant varieties has been a breeding objective of the highest priority in many countries. The purpose of the present work was to gain insight into the mechanism of introgression into C. arabica of a leaf rust resistance gene from C. liberica (i.e. SH3 resistance factor) and to identify associated molecular markers. An F2 progeny (i.e. 101 individuals) derived from a cross between Matari, an arabica accession and liberica-introgressed line S.288, was evaluated for resistance against three different races of H. vastatrix. The progeny segregated for the SH3 gene in a 3:1 ratio, as expected for a single dominant gene. Amplified fragment length polymorphism analysis of a population subset using 80 different primer combinations revealed that at least half of the total polymorphism observed in the population is associated with introgression of C. liberica chromosome fragments. Furthermore, 15 primer combinations generating candidate marker bands associated with the SH3 resistance gene were used to analyse the whole F2 population. A total of 34 marker bands originating from S.288 and attributable to introgression were scored. None exhibited segregation distortion. Linkage analysis revealed only three distinct introgressed fragments corresponding to a total length of 52.8 cM. Twenty-one markers were strongly associated (LOD score >14) with the SH3 gene and were grouped together in a single linkage group of 6.3 cM. The results are discussed in relation to the efficient use of genetic resources in arabica breeding.  相似文献   

9.

Background

Despite the fact that coffee rust was first investigated scientifically more than a century ago, and that the disease is one of the major constraints to coffee production - constantly changing the socio-economic and historical landscape of the crop - critical aspects of the life cycle of the pathogen, Hemileia vastatrix, remain unclear. The asexual urediniospores are regarded as the only functional propagule: theoretically, making H. vastatrix a clonal species. However, the well-documented emergence of new rust pathotypes and the breakdown in genetic resistance of coffee cultivars, present a paradox.

Methods and Results

Here, using computer-assisted DNA image cytometry, following a modified nuclear stoichiometric staining technique with Feulgen, we show that meiosis occurs within the urediniospores. Stages of spore development were categorised based on morphology, from the spore-mother cell through to the germinating spore, and the relative nuclear DNA content was quantified statistically at each stage.

Conclusions

Hidden sexual reproduction disguised within the asexual spore (cryptosexuality) could explain why new physiological races have arisen so often and so quickly in Hemileia vastatrix. This could have considerable implications for coffee breeding strategies and may be a common event in rust fungi, especially in related genera occupying the same basal phylogenetic lineages.  相似文献   

10.
11.
12.
Ricoseius loxocheles (De Leon) (Acari: Phytoseiidae) is often found in coffee crops and is known to feed on coffee leaf rust, Hemileia vastatrix Berkeley and Broome (Uredinales). As the occurrence of coffee leaf rust is limited primarily to the rainy season, the mite may use other food sources to survive during the periods of low pathogen prevalence. It is well known that phytoseiid mites can survive on a variety of food sources, such as herbivorous mites, fungi and pollen. We evaluated the ability of R. loxocheles to survive and reproduce on a diet of Brevipalpus phoenicis Geijskes (Acari: Tenuipalpidae), cattail pollen (Typha spp.), clover rust (Puccinia oxalidis), bee pollen (Santa Bárbara® dehydrated pollen, Santa Bárbara, MG, Brazil) and coffee leaf rust. Ricoseius loxocheles did not survive or reproduce on any B. phoenicis stages tested (egg, larva, adult). The survival and oviposition of R. loxocheles were directly affected by the presence of coffee rust urediniospores, but not by the presence of the prey. Survival and oviposition of the phytoseiid were similar when fed cattail pollen, clover rust and coffee leaf rust but was lower when fed bee pollen. Our results show that R. loxocheles is not a predator of B. phoenicis but it is able to utilize other resources besides coffee leaf rust.  相似文献   

13.
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcross-recombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.  相似文献   

14.
Coffee leaf rust (CLR), caused by the fungal pathogen Hemileia vastatrix, has plagued coffee production worldwide for over 150 years. Hemileia vastatrix produces urediniospores, teliospores, and the sexual basidiospores. Infection of coffee by basidiospores of H. vastatrix has never been reported and thus far, no alternate host, capable of supporting an aecial stage in the disease cycle, has been found. Due to this, some argue that an alternate host of H. vastatrix does not exist. Yet, to date, the plant pathology community has been puzzled by the ability of H. vastatrix to overcome resistance in coffee cultivars despite the apparent lack of sexual reproduction and an aecidial stage. The purpose of this study was to introduce a new method to search for the alternate host(s) of H. vastatrix. To do this, we present the novel hypothetical alternate host ranking (HAHR) method and an automated text mining (ATM) procedure, utilizing comprehensive biogeographical botanical data from the designated sites of interests (Ethiopia, Kenya and Sri Lanka) and plant pathology insights. With the HAHR/ATM methods, we produced prioritized lists of potential alternate hosts plant of coffee leaf rust. This is a first attempt to seek out an alternate plant host of a pathogenic fungus in this manner. The HAHR method showed the highest‐ranking probable alternate host as Psychotria mahonii, Rubus apetalus, and Rhamnus prinoides. The cross‐referenced results by the two methods suggest that plant genera of interest are Croton, Euphorbia, and Rubus. The HAHR and ATM methods may also be applied to other plant–rust interactions that include an unknown alternate host or any other biological system, which rely on data mining of published data.  相似文献   

15.
Inheritance of partial leaf rust and stripe rust resistance of a Thatcher wheat 90RN2491, earlier reported to carry two doses of the gene pairLr34-Yr18 and the reference line RL6058 (6*Thatcher/PI58548) for theLr34-Yr18 gene pair was studied against predominant and highly virulent Indian races. Thatcher derivatives 90RN2491 and RL6058 were intercrossed as well as crossed with the leaf rust and stripe rust susceptible Indian cultivar WL711. The F1, F2 and F3 generations from these crosses were assessed for rust severity against leaf rust race 77-5 and stripe rust race 46S119. The F2 and F3 generations from the crosses of RL6058 and 90RN2491 with WL711, segregated 15 resistant : 1 susceptible (F2) and 7 homozygous resistant : 8 segregating : 1 homozygous susceptible (F3) ratios, respectively, both for leaf rust and stripe rust severity. Therefore, partial resistance against each of the leaf rust and stripe rust races in both RL6058 and 90RN2491 is ascribed to two independently inherited dominant genes. One of the two genes for leaf rust and stripe rust resistance in 90RN2491 and RL6058 isLr34 and the linked geneYr18, respectively. The second leaf rust resistance gene in both the Thatcher lines segregated independently of stripe rust resistance. Therefore, it is notLr34 and it remains unidentified.  相似文献   

16.
The high costs of N fertilizers in the coffee production emphasizes the need to optimize fertilization practices and improve nitrogen use efficiency. Urea is widespread in nature, characterizing itself as a significant source of nitrogen for the growth and development of several organisms. Thus, the characterization of genes involved in urea transport in coffee plants is an important research topic for the sustainable production of this valuable cash crop. In the current study, we evaluated the expression of the DUR3 gene under abiotic and biotic stresses in coffee plants. Here, we show that the expression of a high-affinity urea transporter gene (CaDUR3) was up-regulated by N starvation in leaves and roots of two out of three C. arabica cultivars examined. Moreover, the CaDUR3 gene was differentially expressed in coffee plants under different abiotic and biotic stresses. In plants of cv. IAPAR59, CaDUR3 showed an increased expression in leaves after exposure to water deficit and heat stress, while it was downregulated in plants under salinity. Upon infection with H. vastatrix (coffee rust), the CaDUR3 was markedly up-regulated at the beginning of the infection process in the disease susceptible Catuaí Vermelho 99 in comparison with the resistant cultivar. These results indicate that besides urea acquisition and N-remobilization, CaDUR3 gene may be closely involved in the response to various stresses.  相似文献   

17.
Two Coffea arabicaHemileia vastatrix incompatible interactions (I1: coffee cv. Caturra — rust race VI and I2: coffee cv S4 Agaro — rust race II) and a compatible interaction (coffee cv. Caturra — rust race II) were compared in relation to the infection process and chitinase activity. In the two incompatible interactions the fungus ceased growth in the early infection stages, while in the compatible interaction no fungus growth inhibition was observed. A high constitutive level of chitinase activity was detected in the intercellular fluid of healthy leaves. Upon infection, chitinase isoforms were more abundant in incompatible interactions than in the compatible interaction. Immunodetection showed that class I chitinases are particularly relevant in the incompatible interactions and might participate in the defence response of the coffee plants.  相似文献   

18.
Coffee leaf rust caused by the fungus Hemileia vastatrix (Berk and Br.) is a major disease occurring in coffee plantations. Although the rust fungus exists in different physiological races, the genetic difference between them is meagrely understood. In this study, genetic diversity of 14 identified and two unidentified leaf rust races was determined by sequence‐related amplified polymorphism (SRAP) markers. Of 48 SRAP primer pairs tested, 35 primers are polymorphic and generated 347 distinct scorable fragments. The number of fragments ranged from 4 to 18 with a mean of 9.97 fragments per primer combination. Of the total 347 amplified fragments, 185 fragments (53.31%) are polymorphic with an average of 5.41 fragments per primer combination. The average resolving power (Rp) and the average polymorphism information content (PIC) of the 35 SRAP primer combinations were 13.60 and 0.356, respectively. Of 35 SRAP primer pairs, 15 primer pairs were more informative and generated 25 unique fragments, which are useful for race discrimination. The study demonstrated the existence of genetic variability among various leaf rust races and this information will be helpful in coffee breeding programmes.  相似文献   

19.
20.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号