首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The adenosine A(2A) receptor has emerged as an attractive target for the treatment of Parkinson's disease (PD). Evidence suggests that antagonists of the A(2A) receptor (A(2A) antagonists) may be neuroprotective and may help to alleviate the symptoms of PD. We have reported recently that several members of the (E)-8-styrylcaffeine class of A(2A) antagonists also are potent inhibitors of monoamine oxidase B (MAO-B). Since MAO-B inhibitors are known to possess anti-parkinsonian properties, dual-target-directed drugs that block both MAO-B and A(2A) receptors may have enhanced value in the management of PD. In an attempt to explore this concept further we have prepared three additional classes of C-8 substituted caffeinyl analogues. The 8-phenyl- and 8-benzylcaffeinyl analogues exhibited relatively weak MAO-B inhibition potencies while selected (E,E)-8-(4-phenylbutadien-1-yl)caffeinyl analogues were found to be exceptionally potent reversible MAO-B inhibitors with enzyme-inhibitor dissociation constants (K(i) values) ranging from 17 to 149 nM. Furthermore, these (E,E)-8-(4-phenylbutadien-1-yl)caffeines acted as potent A(2A) antagonists with K(i) values ranging from 59 to 153 nM. We conclude that the (E,E)-8-(4-phenylbutadien-1-yl)caffeines are a promising candidate class of dual-acting compounds.  相似文献   

2.
Caffeine and more specific antagonists of the adenosine A(2A) receptor recently have been found to be neuroprotective in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease. Here we show that 8-(3-chlorostyryl)caffeine (CSC), a specific A(2A) antagonist closely related to caffeine, also attenuates MPTP-induced neurotoxicity. Because the neurotoxicity of MPTP relies on its oxidative metabolism to the mitochondrial toxin MPP(+), we investigated the actions of CSC on striatal MPTP metabolism in vivo. CSC elevated striatal levels of MPTP but lowered levels of the oxidative intermediate MPDP(+) and of MPP(+), suggesting that CSC blocks the conversion of MPTP to MPDP(+) in vivo. In assessing the direct effects of CSC and A(2A) receptors on monoamine oxidase (MAO) activity, we found that CSC potently and specifically inhibited mouse brain mitochondrial MAO-B activity in vitro with a K(i) value of 100 nm, whereas caffeine and another relatively specific A(2A) antagonist produced little or no inhibition. The A(2A) receptor independence of MAO-B inhibition by CSC was further supported by the similarity of brain MAO activities derived from A(2A) receptor knockout and wild-type mice and was confirmed by demonstrating potent inhibition of A(2A) receptor knockout-derived MAO-B by CSC. Together, these data indicate that CSC possesses dual actions of MAO-B inhibition and A(2A) receptor antagonism, a unique combination suggesting a new class of compounds with the potential for enhanced neuroprotective properties.  相似文献   

3.
Based on recent reports that several (E)-8-styrylcaffeinyl analogues are potent reversible inhibitors of monoamine oxidase B (MAO-B), a series of 8-benzyloxycaffeinyl analogues were synthesized and evaluated as inhibitors of baboon liver MAO-B and recombinant human MAO-A and -B. The 8-benzyloxycaffeinyl analogues were found to inhibit reversibly both MAO isoforms with enzyme–inhibitor dissociation constants (Ki values) ranging from 0.14 to 1.30 μM for the inhibition of human MAO-A, and 0.023–0.59 μM for the inhibition of human MAO-B. The most potent MAO-A inhibitor was 8-(3-methylbenzyloxy)caffeine while 8-(3-bromobenzyloxy)caffeine was the most potent MAO-B inhibitor. The analogues inhibited human and baboon MAO-B with similar potencies. A quantitative structure–activity relationship (QSAR) study indicated that the MAO-B inhibition potencies of the 8-benzyloxycaffeinyl analogues are dependent on the Hansch lipophilicity (π) and Hammett electronic (σ) constants of the substituents at C-3 of the benzyloxy ring. Electron-withdrawing substituents with a high degree of lipophilicity enhance inhibition potency. These results are discussed with reference to possible binding orientations of the inhibitors within the active site cavities of MAO-A and -B.  相似文献   

4.
We have recently reported that a series of (E)-8-styrylcaffeines and (E)-2-styrylbenzimidazoles are moderate to very potent competitive inhibitors of monoamine oxidase B (MAO-B). The most potent member of the series was found to be (E)-8-(3-chlorostyryl)caffeine (CSC) with an enzyme-inhibitor dissociation constant (K(i) value) of 128 nM. In the present study, we have prepared additional caffeine and benzimidazole analogues in an attempt to identify compounds with improved MAO-B inhibition potency while still acting reversibly. The most potent inhibitor among the caffeine analogues was (E)-8-(3,4-dichlorostyryl)caffeine with a K(i) value of 36 nM, approximately 3.5 times more potent than CSC. The most potent inhibitor among the benzimidazole analogues was (E)-2-(4-trifluoromethylstyryl)-1-methylbenzimidazole with a K(i) value of 430 nM. An SAR analysis indicated that the potency of MAO-B inhibition by (E)-2-styryl-1-methylbenzimidazole analogues depended upon the Taft steric parameter (E(s)) of the substituents attached to C-4 of the styryl phenyl ring. Substituents with a large degree of steric hindrance appear to enhance inhibition potency. The proposal that potent MAO-B inhibition by (E)-8-styrylcaffeines and (E)-2-styrylbenzimidazoles can be explained by a mode of binding that involves traversing both the entrance and substrate cavities was supported by the finding that 1-methylbenzimidazole only weakly inhibited MAO-B with a K(i) value of 2084 microM. Without the styryl side chain, 1-methylbenzimidazole is not expected to be able to bind simultaneously to both the entrance and substrate cavities.  相似文献   

5.
6.
Adenosine receptor antagonists that are selective for the A(2A) receptor subtype (A(2A) antagonists) are under investigation as possible therapeutic agents for the symptomatic treatment of the motor deficits associated with Parkinson's disease (PD). Results of recent studies in the MPTP mouse model of PD suggest that A(2A) antagonists may possess neuroprotective properties. Since monoamine oxidase B (MAO-B) inhibitors also enhance motor function and reduce MPTP neurotoxicity, we have examined the MAO-B inhibiting properties of several A(2A) antagonists and structurally related compounds in an effort to determine if inhibition of MAO-B may contribute to the observed neuroprotection. The results of these studies have established that all of the (E)-8-styrylxanthinyl derived A(2A) antagonists examined display significant MAO-B inhibitory properties in vitro with K(i) values in the low micro M to nM range. Included in this series is (E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine (KW-6002), a potent A(2A) antagonist and neuroprotective agent that is in clinical trials. The results of these studies suggest that MAO-B inhibition may contribute to the neuroprotective potential of A(2A) receptor antagonists such as KW-6002 and open the possibility of designing dual targeting drugs that may have enhanced therapeutic potential in the treatment of PD.  相似文献   

7.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

8.
In a recent study it was shown that 8-benzyloxycaffeine analogues act as potent reversible inhibitors of human monoamine oxidase (MAO) A and B. Although the benzyloxy side chain appears to be particularly favorable for enhancing the MAO inhibition potency of caffeine, a variety of other C8 oxy substituents of caffeine also lead to potent MAO inhibition. In an attempt to discover additional C8 substituents of caffeine that lead to potent MAO inhibition and to explore the importance of the ether oxygen for the MAO inhibition properties of C8 oxy-substituted caffeines, a series of 8-sulfanyl- and 8-aminocaffeine analogues were synthesized and their human MAO-A and -B inhibition potencies were compared to those of the 8-oxycaffeines. The results document that the sulfanylcaffeine analogues are reversible competitive MAO-B inhibitors with potencies comparable to those of the oxycaffeines. The most potent inhibitor, 8-{[(4-bromophenyl)methyl]sulfanyl}caffeine, exhibited an IC50 value of 0.167 μM towards MAO-B. While the sulfanylcaffeine analogues also exhibit affinities for MAO-A, they display in general a high degree of MAO-B selectivity. The aminocaffeine analogues, in contrast, proved to be weak MAO inhibitors with a number of analogues exhibiting no binding to the MAO-A and -B isozymes. The results of this study are discussed with reference to possible binding orientations of selected caffeine analogues within the active site cavities of MAO-A and -B. MAO-B selective sulfanylcaffeine derived inhibitors may act as lead compounds for the design of antiparkinsonian therapies.  相似文献   

9.
Previous studies have shown that (E)-5-styrylisatin and (E)-6-styrylisatin are reversible inhibitors of human monoamine oxidase (MAO) A and B. Both homologues are reported to exhibit selective binding to the MAO-B isoform with (E)-5-styrylisatin being the most potent inhibitor. To further investigate these structure-activity relationships (SAR), in the present study, additional C5- and C6-substituted isatin analogues were synthesized and evaluated as inhibitors of recombinant human MAO-A and MAO-B. With the exception of 5-phenylisatin, all of the analogues examined were selective MAO-B inhibitors. The C5-substituted isatins exhibited higher binding affinities to MAO-B than the corresponding C6-substituted homologues. The most potent MAO-B inhibitor, 5-(4-phenylbutyl)isatin, exhibited an IC50 value of 0.66 nM, approximately 13-fold more potent than (E)-5-styrylisatin and 18,500-fold more potent than isatin. The most potent MAO-A inhibitor was found to be 5-phenylisatin with an IC50 value of 562 nM. The results document that substitution at C5 with a variety of substituents is a general strategy for enhancing the MAO-B inhibition potency of isatin. Possible binding orientations of selected isatin analogues within the active site cavities of MAO-A and MAO-B are proposed.  相似文献   

10.
Previous studies have shown that (E)-8-(3-chlorostyryl)caffeine (CSC) is a specific reversible inhibitor of human monoamine oxidase B (MAO-B) and does not bind to human MAO-A. Since the small molecule isatin is a natural reversible inhibitor of both MAO-B and MAO-A, (E)-5-styrylisatin and (E)-6-styrylisatin analogues were synthesized in an attempt to identify inhibitors with enhanced potencies and specificities for MAO-B. The (E)-styrylisatin analogues were found to exhibit higher binding affinities than isatin with the MAO preparations tested. The (E)-5-styrylisatin analogues bound more tightly than the (E)-6 analogue although the latter exhibits the highest MAO-B selectivity. Molecular docking studies with MAO-B indicate that the increased binding affinity exhibited by the (E)-styrylisatin analogues, in comparison to isatin, is best explained by the ability of the styrylisatins to bridge both the entrance cavity and the substrate cavity of the enzyme. Experimental support for this model is shown by the weaker binding of the analogues to the Ile199Ala mutant of human MAO-B. The lower selectivity of the (E)-styrylisatin analogues between MAO-A and MAO-B, in contrast to CSC, is best explained by the differing relative geometries of the aromatic rings for these two classes of inhibitors.  相似文献   

11.
The synthesis and biological testing of a novel series of nonpeptide vasopressin receptor antagonists, containing a bridged bicyclic nucleus, are reported. Variation of substituents (R(1)-R(3)) in general formula 3, and the configuration of the stereocenter, resulted in potent V(2)-selective (e.g., 5) and balanced dual V(1a)/V(2) (e.g., 10) compounds. Data from receptor binding, cell-based functional, and in vivo assays are presented [corrected]  相似文献   

12.
A novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazol o[1,5-a]pyridines was synthesized and evaluated for in vitro adenosine A1 and A2A receptor binding activities. Most of the cyclohexenyl derivatives (7a-e, 8a-s) were found to be potent adenosine A1 receptor antagonists. In a series of analogues of FR166124 (3a), alcohol 7c, nitrile 7e and amide derivatives (7d, 8c, 8r) were found to be more potent A1 antagonists with higher A2A/A1 selectivity than FR166124. Amongst them, 8r showed considerable water solubility (33.3 mg/mL), but lower than that of the sodium salt of FR166124 (> 200 mg/mL). Additionally, FR166124 had strong diuretic activity by both p.o. and iv administration in rats (minimum effective dose=0.1 and 0.032 mg/kg, respectively).  相似文献   

13.
The structure-affinity relationships of two novel 2-substituted adenosine series containing a substituted pyrazole attached at the N-1 or C-4 position for the adenosine (ADO) A2A receptor are described. Compounds in the 2-(N-1-pyrazolyl) adenosine series IV provided the highest affinity for the ADO A2A receptor as compared to the 2-(C-4-pyrazolyl) series V. The main structural differences between the two series point to the N-1 nitrogen of series IV imparting more favorable binding interactions with the receptor than those of series V.  相似文献   

14.
The development of potent and selective adenosine receptor ligands as potential drugs is an active area of research. Xanthines are one of the most important classes of adenosine receptor antagonists and have been widely developed in terms of affinity and selectivity for adenosine receptors. We recently developed new original pathways for the synthesis of xanthine analogues starting from 5-substituted-2-amino-2-oxazoline 5 as a synthon. These procedures allowed us to selectively introduce a large, functionalized and beta-adrenergic 2-hydroxy-3-phenoxypropyl pharmacophore at the 1- and 3-position of the xanthine moiety which allowed further structural modifications. In this study, we present a new synthetic access to racemic xanthine derivatives 1-4 from 5, and their evaluation as adenosine A1, A2A and A3 receptor ligands in radioligand binding studies. The 2-hydroxy-3-phenoxypropyl moiety was well tolerated in the 3-position of the xanthine core, while its introduction in the 1-position of the xanthine moiety led to a large decrease in adenosine receptor affinity. 1,7-Dimethyl-3-[1-(2-chloro-3-phenoxypropyl)]-8-(3,4,5-trimethoxystyryl)xanthine (2n) was the most potent and selective A2A antagonist of the present series (Ki=44 nM, >200-fold selective vs A1). 1-Propyl-3-[1-(2-hydroxy-3-phenoxypropyl)]-8-noradamantylxanthine (3f) was identified as a potent (KiA1=21 nM) and highly selective (>350-fold vs A2A and A3 receptor) adenosine A1 receptor antagonist.  相似文献   

15.
The behavioral stimulant effects of xanthines, such as caffeine and theophylline, appear to involve blockade of central adenosine receptors. However, 3-isobutyl-1-methylxanthine (IBMX), a potent phosphodiesterase (PDE) inhibitor, produces behavioral depression. The effects of caffeine analogs on open field behavior of mice and potencies as antagonists of adenosine receptors and as inhibitors of three classes of brain PDE have been compared. 1,7-Dimethyl-3-propargylxanthine, 1,3,7-tripropargylxanthine, and 3,7-dimethyl-1-propargylxanthine, which have high affinity for adenosine receptors and weaker activity as PDE inhibitors, all increase behavioral activity. In contrast, 1,3,7-tripropylxanthine, a more potent inhibitor of the brain calcium-independent (Ca-indep) PDEs than 1,3,7-tripropargylxanthine, produces behavioral depression, even though both analogues are potent adenosine receptor antagonists. 7-Benzyl-IBMX, an active receptor antagonist and selective inhibitor of a brain calcium-dependent (Ca-dep) PDE, produces a slight behavioral activation. Xanthines that are potent adenosine receptor antagonists and relatively weak inhibitors of the Ca-indep PDEs reverse the depressant effects of N6-cyclohexyladenosine, while xanthines, such as 1,3,7-tripropylxanthine, that are potent inhibitors of the Ca-indep PDEs, do not. The results suggest that the behavioral effects of xanthines may be determined primarily by relative activity as adenosine receptor antagonists and as inhibitors of brain Ca-indep PDEs.  相似文献   

16.
Structure-activity relationships have been investigated through substitutions at the 9-position of the 2-amino-6-(2-furanyl) purine (5) to identify novel and selective A(2A) adenosine receptor antagonists. Several potent and selective antagonists were identified. In particular, compounds 20, 25, and 26 show very high affinity with excellent selectivity.  相似文献   

17.
In our effort to find potent, orally bioavailable CGRP receptor antagonists for the treatment of migraine, a novel series based on a pyridinone template was investigated. After optimizing the privileged structure and the placement of the attached phenyl ring, systematic SAR was carried out on both the N-alkyl and C-5 aryl substituents. Several analogs with good potency and pharmacokinetic profiles were identified.  相似文献   

18.
In a previous study we have investigated the monoamine oxidase (MAO) inhibitory properties of a series of 8-sulfanylcaffeine analogues. Among the compounds studied, 8-[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM) was found to be a particularly potent inhibitor of the type B MAO isoform. In an attempt to discover potent MAO inhibitors and to further examine the structure–activity relationships (SAR) of MAO inhibition by 8-sulfanylcaffeine analogues, in the present study a series of 8-[(phenylethyl)sulfanyl]caffeine analogues were synthesized and evaluated as inhibitors of human MAO-A and -B. The results document that substitution on C3 and C4 of the phenyl ring with alkyl groups and halogens yields 8-[(phenylethyl)sulfanyl]caffeine analogues which are potent and selective MAO-B inhibitors with IC50 values ranging from 0.017 to 0.125 μM. The MAO inhibitory properties of a series of 8-sulfinylcaffeine analogues were also examined. The results show that, compared to the corresponding 8-sulfanylcaffeine analogues, the 8-sulfinylcaffeins are weaker MAO-B inhibitors. Both the 8-sulfanylcaffeine and 8-sulfinylcaffeine analogues were found to be weak MAO-A inhibitors. This study also reports the MAO inhibition properties of selected 8-[(phenylpropyl)sulfanyl]caffeine analogues.  相似文献   

19.
In high throughput screening of our file compounds, a novel structure 1 was identified as a potent A(2A) receptor antagonist with no selectivity over the A1 adenosine receptor. The structure-activity relationship investigation using 1 as a template lead to identification of a novel class of compounds as potent and selective antagonists of A(2A) adenosine receptor. Compound 26 was identified to be the most potent A(2A) receptor antagonist (Ki = 0.8 nM) with 100-fold selectivity over the A1 adenosine receptor.  相似文献   

20.
García-Alles LF  Zahn A  Erni B 《Biochemistry》2002,41(31):10077-10086
The glucose (EII(Glc)) and mannose (EII(Man)) permeases of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) of Escherichia coli belong to structurally different families of PTS transporters. The sugar recognition mechanism of the two transporters is compared using as inhibitors and pseudosubstrates all possible monodeoxy analogues, monodeoxyfluoro analogues, and epimers of D-glucose. The analogues were tested as phosphoryl acceptors in vitro and as uptake inhibitors with intact cells. Both EII have a high K(m) of phosphorylation for glucose modified at C-4 and C-6, and these analogues also are weak inhibitors of uptake. Conversely, modifications at C-1 (and also at C-2 with EII(Man)) were well tolerated. OH-3 is proposed to interact with hydrogen bond donors on EII(Glc) and EII(Man), since only substitution by fluorine was tolerated. Glucose-6-aldehydes, which exist as gem-diols in aqueous solution, are potent and highly selective inhibitors of "nonvectorial" phosphorylation by EII(Glc) (K(I) 3-250 microM). These aldehydes are comparatively weak inhibitors of transport by EII(Glc) and of phosphorylation and transport by EII(Man). Both transporters display biphasic kinetics (with glucose and some analogues) but simple Michaelis-Menten kinetics with 3-fluoroglucose (and other analogues). Kinetic simulations of the phosphorylation activities measured with different substrates and inhibitors indicate that two independent activities are present at the cytoplasmic side of the transporter. A working model that accounts for the kinetic data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号