首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

2.
Aerobic granules can be used for the treatment of industrial or municipal wastewater, but high aeration rate is required for the stable operation of the granular sludge system. Therefore, the aim of this research was to reduce aeration rate greatly to decrease the energy consumption for the technology of aerobic granules. Based on the characteristics of sequencing batch reactor with distinct feast and famine periods, aeration rate was reduced from 1.66 to 0.55 cm s−1 in the famine period after granules were formed. It was found that the settleability of aerobic granules in reactor R1 with reduced aeration was the same as that of aerobic granules in reactor R2 with constant aeration rate of 1.66 cm s−1. However, the outer morphology of aerobic granules gradually changed from round shape to long shape, and minor population showed certain shift after aeration rate was reduced in the famine period. Since good settleability is the most essential feature of aerobic granules, it can be said that reducing aeration rate in famine period did not influence the stable operation of aerobic granular sludge system. Furthermore, the experimental results indicated that aeration rate in feast period was much more important to the stable operation of aerobic granules than that in famine period.  相似文献   

3.
Summary The granulation and properties of aerobic sludge were studied in two sequencing batch airlift reactors (SBARs). The synthetic wastewater in the two reactors had initially different levels of COD (400 mg l−1 in R1 and 1600 mg l−1 in R2). A hydraulic cycle time of 3 and 12 h was conducted in the reactors R1 and R2, respectively and the process of granulation was observed by optical microscopy. It was found that the course of granulation at a cycle time of 3 h in R1 was shorter than that at cycle time of 12 h in R2 and the properties of aerobic granules were distinct in the reactors due to the different hydraulic cycle time. Under a cycle time of 3 h, granule diameter was around 1.0–2.0 mm, VSS ratio was 92.08% with stronger granule strength; under a cycle time of 12 h, granule diameter was around 0.5–1.0 mm, VSS ratio was 83.92% with weaker granule strength. In addition, the morphology of microorganisms in granules was obviously dissimilar when the hydraulic cycle time was different. It was concluded that the hydraulic cycle time plays a crucial role in the granulation and properties of aerobic granules. It is expected that the experimental findings will provide useful information on factors affecting aerobic granulation.  相似文献   

4.
Noscoc flagelliforme is a terrestrial macroscopic cyanobacterium with high economic value. Free-living cells that were separated from a natural colony of N. flagelliforme were cultivated in a 20-L photobioreactor for 16 days at five agitation rates with impeller tip speeds at 0.3, 0., 0.8, 1.0, and 1.5 m·s−1. With different impeller tip speeds there were significant differences in the cell growth and polysaccharide production, and different types of cell colonies appeared because of different shear forces caused by agitation. At harvest time, cell concentrations with tip speeds of 0.8 and 1.0 m·s−1 were clearly higher than those with the other three tip speeds, but dry cell weights with the tip speeds of 0.3, 0.5, 0.8, and 1.0 m·s−1 were almost the same. The highest RPS (polysaccharide that released into liquid medium) production was obtained with the tip speeds of 0.8 and 1.0 m·s−1, while the highest EPS (polysaccharide that formed capsule or slime layer) production was obtained with the tip speed of 0.5 m·s−1. The tip speed of 1.5 m·s−1 was harmful for both cell growth and polysaccharide production, indicating that an appropriate shear force was needed in the liquid suspension culture of N. flagelliforme.  相似文献   

5.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

6.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

7.
The effect of the polychaete Nereis diversicolor on the stability of natural cohesive sediments was investigated in the laboratory. Three densities (450, 600 and 1200 ind m−2) of N. diversicolor were used. Sediment shear strength was measured using a cone penetrometer. Sediment erodability was assessed using an annular flume (current velocities from 5 to 55 cm s−1) in which flow velocity was increased incrementally, and water sampled to quantify suspended material in order to derive critical erosion velocity and erosion rates. At low current velocities ( <25 cm s−1), we found N. diversicolor to have a stabilising effect, reflected by an increase of up to 20% in the critical erosion velocity. This is related to an enhancement of ~50% in shear strength, due probably to gallery building activities, responsible for the promotion of lateral compaction, an increase in the area of the sediment–water interface, and enhanced microphytobenthos production. Once the sediment began to erode, the stabilising effect of N. diversicolor reverses, leading to an increase of up to 40% in eroded matter due to compaction, which resulted in the erosion of larger aggregates. The balance between the effect of N. diversicolor on herbivory and microphytobenthos production due to the presence of galleries is discussed. Our results indicate that neither chlorophyll a, nor shear strength nor critical erosion velocity are good indicators of erodability. This underlines the need to include biogeochemical processes in any realistic sediment transport model.  相似文献   

8.
Four column-type sequential aerobic sludge blanket reactors were fed with phenol as the sole carbon and energy source and operated at loading rates of 1.0, 1.5, 2.0 and 2.5 kg phenol m–3 day–1. The results indicated that phenol loading exerted a profound influence on the structure, activity and metabolism of the aerobic granules. Compact granules with good settling ability were maintained at loadings up to 2.0 kg phenol m–3 day–1, and structurally weakened granules with enhanced production of extracellular polymers and proteins and significantly lower hydrophobicities were observed at the highest loading of 2.5 kg phenol m–3 day–1. Specific oxygen uptake rate, catechol 2,3-dioxygenase (C23O) and catechol 1,2-dioxygenase (C12O) activities peaked at a loading of 2.0 kg phenol m–3 day–1, and declined thereafter. Granules degraded phenol completely in all four reactors, mainly through the meta cleavage pathway as C23O activities were significantly higher than C12O activities. At the highest loading applied, the anabolism and catabolism of microorganisms were regulated such that phenol degradation proceeded exclusively via the meta pathway, apparently to produce more energy for overstimulation of protein production against phenol toxicity. This work contributes to a better understanding of the ability of aerobic granules to handle high-strength industrial wastewaters containing chemicals that are normally inhibitory to microbial growth.  相似文献   

9.
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s−1 to 262 s−1 are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASHTM explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s−1, 183 s−1 and 262 s−1 for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.  相似文献   

10.
11.
The relaxation rates (1 / T 1 and 1 / T 2) in cysts have already been analyzed in terms of materials such as albumin, cholesterol, manganese, iron, and copper. However, the relaxivities of these materials have not been determined yet. In this work, five sets containing the ions, albumin, and cholesterol were prepared by addition of increasing concentration of one material to each set. The relaxation times in these sets were measured by MRI, and the relaxation rates were fitted versus concentrations. The slopes of the fits were used as relaxivities. The (r 1, r 2) values of manganese, iron, and copper in mM−1 s−1, and those of albumin and cholesterol in (g/dl)−1 s−1 were found to be (32.64, 89.77), (0.31, 1.19), (0.5, 1.479), (0.01, 0.066) and (0.03, 0.458), respectively. The r 2/r 1 ratio ranged from 2.75 to 15.27. Manganese is an efficient relaxer, but iron and copper are poor ones. Albumin and cholesterol are efficient relaxers for only T 2. The contribution of water associated with native manganese of the cystic fluid to T 1 was 0.268 s−1, whereas those of water associated with native manganese, albumin, cholesterol, and iron to T 2 were 0.736, 0.185, 0.092, and 0.076 s−1, respectively. The other contributions were much smaller than 0.076 s−1. Manganese is most likely the compound altering T 1-weighted images between different jaw cysts, whereas manganese and albumin are most likely the compounds altering the T 2-weighted images. Present data suggest that such alterations may be used to separate jaw cysts from other jaw masses. The high r 2/r 1 suggests that T 2 is a more convenient parameter than T 1 for diagnostic use. This work is a part of the PhD thesis of U. Nezih Yilmaz supervised by R. Guner.  相似文献   

12.
The gene (vgb) encoding the hemoglobin (VHb) ofVitreoscilla sp. was cloned intoBurkholderia sp. and the effect of VHb on the growth characteristics of genetically engineeredBurkholderia (YV1) were compared with wild typeBurkholderia (R34) using continuous flow reactors (chemostat) at various dilution rates under aerobic conditions. Batch oxygen uptake rate showed that YV1 has much higher oxygen uptake rate than R34 (i.e. 0.63 mg O2/g biomass/min vs. 1.43 mg O2/g biomass/min for R34 and YV1 respectively at a dilution rate of 1.2 day−1). Monod parameters, maximum growth rate (μmax) and half saturation coefficient (Ks) were found to be 7.03 day−1 and 691 mg/L for R34 respectively, compared to 5.49 day−1 and 404 mg/L for YV1 respectively. At low dilution rates (<2.5 day−1), when the substrate is present in low concentrations, the growth yield was much higher in YV1 (0.52) than in R34 (0.37). Although substrate utilization rates were similar between R34 and YV1, the latter showed much higher oxygen uptake rate than did R34 at all dilution rates. When the stability of VHb was tested on agar plates containing 40 μg/L of kanamycin and 100 μg/L of ampicillin,vgb gene containing VHb plasmid in YV1 was stable over 82 days. When survivability under oxygen limited conditions was tested, R34 survived only for 11 days whereas YV1 survived over 25 days in liquid media; in agar plate experiments, R34 did not survive more than 40 days whereas more than 75% of YV1 survived over 110 days.  相似文献   

13.
Effect of air aeration intensities on granule formation and extracellular polymeric substances content in three identical sequential batch reactors were investigated. The excitation–emission–matrix spectra and multiple staining and confocal laser scanning microscope revealed proteins, polysaccharides, lipids, and humic substances in the sludge and granule samples. Seed sludge flocs were compacted at low aeration rate, with produced extracellular polymeric substances of 50.2–76.7 mg g−1 of proteins, 50.2–77.3 mg g−1 carbohydrates and 74 mg g−1 humic substances. High aeration rate accelerated formation of 1.0–1.5 mm granules with smooth outer surface. The corresponding quantities of extracellular polymeric substances were 309–537 mg g−1 of proteins, 61–109 mg g−1 carbohydrates, 49–92 mg g−1 humic substances, and 49–68 mg g−1 lipids. Intermediate aeration rate produced 3.0–3.5 mm granules with surface filaments. Reactor failure occurred with overgrowth of filaments, probably owing to the deficiency of nutrient in liquid phase. No correlation was noted between extracellular polymeric substances composition and the proliferation of filamentous microorganisms on granule surface.  相似文献   

14.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

15.
The relationship between net photosynthetic (P N) and leaf respiration (R) rates of Quercus ilex, Phillyrea latifolia, Myrtus communis, Arbutus unedo, and Cistus incanus was monitored in the period February 2006 to February 2007. The species investigated had low R and P N during winter, increasing from March to May, when mean air temperature reached 19.2 °C. During the favourable period, C. incanus and A. unedo had a higher mean P N (16.4±2.4 μmol m−2 s−1) than P. latifolia, Q. ilex, and M. communis (10.0±1.3 μmol m−2 s−1). The highest R (1.89±0.30 μmol m−2 s−1, mean of the species), associated to a significant P N decrease (62 % of the maximum, mean value of the species), was measured in July (mean R/P N ratio 0.447±0.091). Q10, indicating the respiration sensitivity to short-term temperature increase, was in the range 1.49 to 2.21. Global change might modify R/P N determining differences in dry matter accumulation among the species, and Q. ilex and P. latifolia might be the most favoured species by their ability to maintain sufficiently higher P N and lower R during stress periods.  相似文献   

16.
Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250–2,000 mg l−1. The corresponding phenol degradation rate reached 993.6 mg phenol g−1 volatile suspended solids (VSS) day−1 at 250 mg l−1 phenol and 519.3 mg phenol g−1 VSS day−1 at 2,000 mg l−1 phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol >1,500 mg l−1. Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200–250 μm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.  相似文献   

17.
Metabolic hotspots at land–water interfaces are important in supporting biogeochemical processes. Here we confirm the generality of land–aquatic interfaces as biogeochemical hot spots by extending this concept to marine beach cast materials. In situ atmospheric pCO2, from a respiration chamber (10 cm in diameter and 20 cm high) inserted into wrack deposits, was determined using a high-precision (±1 ppm) non-dispersive infrared gas analyzer (EGM-4, PP-systems) at 1 minute recording intervals. The wrack deposits supported high metabolic activities, with CO2 fluxes averaging (±SE) 6.62 ± 0.88 μmol C m−2 s−1, compared to median value of 0.98 μmol C m−2 s−1 (mean 2.21 ± 1.25 μmol C m−2 s−1) for bare sand adjacent to deposits. Wrack metabolic rates ranged 40-fold across beaches, from a minimum of 0.57 ± 0.22 μmol C m−2 s−1 to a maximum of 20.8 ± 5.04 μmol C m−2 s−1, both derived from beaches with deposits dominated by Sargassum. Rates tended to increase significantly (F test, P < 0.05) from the shoreline to reach maximum rates at about 10 m from the shoreline, declining sharply further from the shoreline, and increased with increasing thickness of the deposits (maximum about 10 cm deep), declining for thicker deposits. Wrack differing in composition had similar metabolic rates, although deposits consisting of a mixture of seagrass and algae tended to show somewhat higher rates. Our results show a meter square of wrack deposit supports a metabolic rate equivalent to that supported by 3 m2 of living seagrass or macroalgal habitat. In wrack, the marine environment provides organic material and moisture and the land environment provides oxygen to render wrack ecosystems an efficient metabolic reactor. Intense wrack metabolism should also be conducive to organismal growth by supporting the development of a cryptic, but diverse wrack-based food web.  相似文献   

18.
While many coral reef fishes utilise substratum refuges, the direct influence of water flow and swimming ability on such refuging patterns is yet to be established. This study examined the swimming ability and refuging behaviour of a labrid (Halichoeres margaritaceus) and a pomacentrid (Pomacentrus chrysurus) that inhabit high flow, wave-swept coral reef flats. Field observations of refuging patterns were combined with experimental evaluations in a flow tank using a replica of a substratum hole frequently used by these species. Under a range of flow speeds commonly found on the reef flat (0–60 cm s−1), flow within the substratum refuge was reduced to speeds of 0–12 cm s−1, representing a 75–100% flow reduction. Swimming ability of each species was then tested at 60 cm s−1 with and without access to this flow refuge. Both species were able to maintain activity within the 60 cm s−1 flow for considerably longer when provided with a refuge, with increases from approximately 39 min to 36 h for H. margaritaceus and 8 min to 88 h for P. chrysurus. Despite H. margaritaceus having the strongest swimming ability without access to a refuge, P. chrysurus was able to maintain swimming activity more than twice as long as H. margaritaceus when provided with a refuge. These increases in activity are probably due to energetic savings, with this type of refuge providing an estimated 95% energy saving over swimming directly into a unidirectional flow of 60 cm s−1. These results highlight the major advantages provided by refuging behaviour and emphasise the importance of habitat refuges in shaping patterns of habitat use in reef fishes.  相似文献   

19.
Highly productive papyrus (Cyperus papyrus L.) wetlands dominate many permanently flooded areas of tropical East Africa; however, the cycling of carbon and water within these ecosystems is poorly understood. The objective of this study was to utilise Eddy Covariance (EC) techniques to measure the fluxes of carbon dioxide and water vapour between papyrus vegetation and the atmosphere in a wetland located near Jinja, Uganda on the Northern shore of Lake Victoria. Peak, midday rates of photosynthetic CO2 net assimilation were approximately 40 μmol CO2 m−2 s−1, while night time losses through respiration ranged between 10 and 20 μmol COm−2 s−1. Numerical integration of the flux data suggests that papyrus wetlands have the potential to sequester approximately 0.48 kg C m−2 y−1. The average daily water vapour flux from the papyrus vegetation through canopy evapotranspiration was approximately 4.75 kg H2O m−2 d−1, which is approximately 25% higher than water loss through evaporation from open water.  相似文献   

20.
Parental genotypes (cv. Aramir and line R567) and the selected doubled haploid (DH) lines C23, C47/1, C41, C55 did not differ in NR activity when they grew on a nutrient solution containing 10 mM KNO3 and were illuminated with light at 124 μmol·m−2·s−1 intensity. A decrease of nitrate content in the nutrient medium to 0.5 mM at 44 μmol·m−2·s−1 light intensity caused a significant reduction of NR activity in the parental genotypes as well as in the lines C41 and C55. An increase in light intensity to 124 μmol·m−2·s−1 raised NR activity in the leaf extracts of these genotypes. However, independently of light intensity, a high level of this enzyme activity was maintained in the line C23 growing on the nutrient medium with 10 mM and 0.5 mM KNO3. The NR activity in that line dropped only when nitrate content in the medium decreased to 0.1 mM. NR in the leaves of the line C23, as compared to C41, was characterized by a higher thermal stability in all experimental combinations. An increase in light intensity had no significant influence on NR thermal stability in the leaves of the line C41, but induced a significant increase of this enzyme stability in the line C23. The lines C23 and C41 growing on the nutrient medium with 0.5 mM KNO3 differed appreciably by nitrate concentration in leaves. A higher accumulation of nitrates was detected in the leaves of the line C41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号