首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Glutathione affinity chromatography and two-dimensional electrophoresis (2-DE) were used to purify glutathione binding proteins from Caenorhabditis elegans. All proteins identified after peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight were found to belong to the glutathione S-transferase (GST) superfamily. From the 26 individual spots identified, 12 different GSTs were isolated. Of these, five were found on the gel only once, whilst the remaining seven were represented by 21 separate spots. Most of the GSTs identified were of the nematode specific class, however, three Alpha class GSTs, a Pi and a Sigma class GST were also isolated.  相似文献   

2.
Glutathione transferases (GSTs) play a central role in the detoxification of xenobiotics such as insecticides and elevated GST expression is an important mechanism of insecticide resistance. In the mosquito, Anopheles gambiae, increased expression of an Epsilon class GST, GSTE2, confers resistance to DDT. We have identified eight GST genes in the dengue vector, Aedes aegypti. Four of these belong to the insect specific GST classes Delta and Epsilon and three are from the more ubiquitously distributed Theta and Sigma classes. The expression levels of the two Epsilon genes, a Theta GST and a previously identified Ae. aegypti GST [Grant and Hammock, 1992. Molecular and General Genetics 234, 169-176] were established for an insecticide susceptible and a resistant strain. We show that the putative ortholog of GSTe2 in Ae. aegypti (AaGSTe2) is over expressed in mosquitoes that are resistant to the insecticides DDT and permethrin. Characterisation of recombinant AaGSTE2-2 confirmed the role of this enzyme in DDT metabolism. In addition, unlike its Anopheles ortholog, AaGSTE2-2 also exhibited glutathione peroxidase activity.  相似文献   

3.
The glutathione transferases (GSTs) are a large group of enzymes having both detoxication roles and specialist metabolic functions. The present work represents an initial approach to identifying some of these roles by examining the variation of specific members of the family under differing conditions. The GSTs from Lucilia cuprina have been partially purified, members of two families being isolated, by the use of glutathione immobilised on epichlorhydrin-activated Sepharose 6B. The GSTs were separated by 2D SDS-PAGE and characterised by MALDI-TOF analysis of tryptic peptides. The mass fragments were then matched against the corresponding Drosophila melanogaster and Musca domestica sequences. GSTs were identified as coming from only the Sigma and Delta classes. The multiple Delta zones appear all to be derived from the Lucilia GSTD1 isoform. The distribution of these GST proteins has been studied during different developmental stages of the insect. Delta isoforms were present in all developmental stages of L. cuprina. The Sigma GST was not detectable in the egg, was just detectable in the larval and pupal stages and was the major GST isolated in the adult. Sigma and Delta isoforms were both found in all body segments of the insect. Both isoforms appear to undergo extensive post-translational modification. Activities of the two types of protein with model substrates have been determined.  相似文献   

4.
5.
The crystal structure of GST Nu2-2 (HpolGSTN2-2) from the model hookworm nematode Heligmosomoides polygyrus has been solved by the molecular replacement method and refined to a resolution of 1.71 A, providing the first structural data from a class of nematode-specific GSTs. By structural alignment with two Sigma class GSTs, glutathione could be rationally docked into the G-site of the enzyme. By comparing with all mammalian GST classes, a novel, long, and deep cleft was identified at the H-site, providing a potential site for ligand binding. This new GST class may support the establishment of infection parasitic nematodes by passively neutralizing chemical toxins derived from host environment. The structure serves as a starting point for structure-based drug/inhibitor design that would aim to selectively disrupt nematode chemical defenses.  相似文献   

6.
J L DeJong  T Mohandas  C P Tu 《Genomics》1990,6(2):379-382
The microsomal glutathione S-transferase (GST) is a unique membrane-bound GST structurally distinct from the cytosolic GSTs. A cDNA encoding this 154 amino acid protein has recently been isolated and characterized. Using the cDNA as the hybridization probe, we now report the assignment of the human microsomal GST gene to chromosome 12 through the use of a panel of mouse-human somatic cell hybrid lines. This locus has recently been designated as GST 12. In addition, genomic Southern blotting data suggest that the human microsomal GST is encoded by a single- or very-low-copy gene. Therefore, the human GST gene superfamily resides on at least four separate chromosomes: 1 (GST 1), 6 (GST 2), 11 (GST 3), and 12 (GST 12).  相似文献   

7.
The expression of different isoenzymes of glutathione transferase (GST), i.e. the cytosolic subunits GSTA1/A2, A3, A4, A5, M1/2, M2 and P1, T2, and the microsomal GST in follicles of different sizes and in corpora lutea from porcine ovary, was investigated by Western blotting. No immunoreactivity was obtained with anti-rat GSTT2 or anti-rat microsomal GST polyclonal antibodies. In contrast, GSTA1/A2, A3, A4, A5, M1/2, M2 and P1 are all expressed in the cytosol from porcine ovaries. In general, the highest levels of these GST isoenzymes were present in the cytosol from corpora lutea, in agreement with measurements of activity towards 1-chloro-2,4-dinitrobenzene. Immunoreactivity with anti-rat GSTP1 was only obtained with follicles. The cytosolic GSTs from follicles and corpora lutea were affinity purified on glutathione-Sepharose and separated by reversed-phase high-performance liquid chromatography in order to quantitate the different subunits. A peak corresponding to the class pi subunit was present in follicles. This peak was also seen with corpora lutea, although at very low level. There were four peaks containing class mu subunits. The remaining peaks were concluded to contain the class alpha subunits, except for two peaks which are suggested to contain proteins other than GSTs. The levels of the different subunits were quantitated on the basis of the areas under the peaks and the relative amounts in follicles of different sizes and in corpora lutea corresponded well with the Western blot analysis.  相似文献   

8.
A new Anopheles dirus glutathione S-transferase (GST) has been obtained and named adGST4-1. Both genomic DNA and cDNA for heterologous expression were acquired. The genomic sequence was 3188bp and consisted of the GST gene as well as flanking sequence. The flanking sequence was analyzed for possible regulatory elements that would control gene expression. In Drosophila several of these elements have been shown to be involved in development and cell differentiation. The deduced amino acid sequence has low identity compared with the four alternatively spliced enzymes, adGST1-1 to 1-4, from another An. dirus GST gene adgst1AS1. The percent identities are 30--40% and 11--12% comparing adGST4-1 to insect GSTs from Delta and Sigma classes, respectively. Enzyme characterization of adGST4-1 shows it to be distinct from the other An. dirus GSTs because of low enzyme activity for customary GST substrates including 1-chloro-2, 4-dinitrobenzene (CDNB). However, this enzyme has a greater affinity of interaction with pyrethroids compared to the other An. dirus GSTs.  相似文献   

9.
Overexpression in Escherichia coli of a tau (U) class glutathione transferase (GST) from maize (Zea mays L.), termed ZmGSTU1, caused a reduction in heme levels and an accumulation of porphyrin precursors. This disruption was highly specific, with the expression of the closely related ZmGSTU2 or other maize GSTs having little effect. Expression in E. coli of a series of chimeric ZmGSTU1/ZmGSTU2 proteins identified domains responsible for disrupting porphyrin metabolism. In addition to known heme precursors, expression of ZmGSTU1 led to the accumulation of a novel glutathione conjugate of harderoporphyrin(ogen) (2,7,12,18-tetramethyl-3-vinylporphyrin-8,13,17-tripropionic acid). Using the related protoporphyrinogen as a substrate, conjugation could be shown to occur on one vinyl group and was actively catalyzed by the ZmGSTU. In plant transgenesis studies, the ZmGSTUs did not perturb porphyrin metabolism when expressed in the cytosol of Arabidopsis or tobacco. However, expression of a ZmGSTU1-ZmGSTU2 chimera in the chloroplasts of tobacco resulted in the accumulation of the harderoporphyrin(ogen)-glutathione conjugate observed in the expression studies in bacteria. Our results show that the well known ability of GSTs to act as ligand binding (ligandin) proteins of porphyrins in vitro results in highly specific interactions with porphyrinogen intermediates, which can be demonstrated in both plants and bacteria in vivo.  相似文献   

10.
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha.  相似文献   

11.
The glutathione transferases (GSTs) from maize (Zea mays L.) with activities toward the chloroacetanilide herbicide metolachlor and the diphenyl ether herbicide fluorodifen were fractionated into two pools based on binding to affinity columns. Pool 1 GSTs were retained on Orange A agarose and were identified as isoenzymes Zea mays (Zm) GST I-I, Zm GST I-II and Zm GST I-III, which have been described previously. Pool 2 GSTs selectively bound to S-hexyl-glutathione-Sepharose and were distinct from the pool 1 GSTs, being composed of a homodimer of 28.5 kDa subunits, termed Zm GST V-V, and a heterodimer of the 28.5 kDa polypeptide and a 27.5 kDa subunit, termed Zm GST V-VI. Using an antibody raised to Zm GST V-VI, a cDNA expression library was screened and a Zm GST V clone identified showing sequence similarity to the type-III auxin-inducible GSTs previously identified in tobacco and other dicotyledenous species. Recombinant Zm GST V-V showed high GST activity towards the diphenyl ether herbicide fluorodifen, detoxified toxic alkenal derivatives and reduced organic hydroperoxides. Antibodies raised to Zm GST I-II and Zm GST V-VI were used to monitor the expression of GST subunits in maize seedlings. Over a 24 h period the Zm GST I subunit was unresponsive to chemical treatment, while expression of Zm GST II was enhanced by auxins, herbicides, the herbicide safener dichlormid and glutathione. The Zm GST V subunit was more selective in its induction, only accumulating significantly in response to dichlormid treatment. During development Zm GST I and Zm GST V were expressed more in roots than in shoots, with Zm GST II expression limited to the roots.  相似文献   

12.
In the present work, we describe the characterisation of the glutathione transferase (GST) gene family from Agrobacterium tumefaciens C58. A genome survey revealed the presence of eight GST-like proteins in A. tumefaciens (AtuGSTs). Comparison by multiple sequence alignment generated a dendrogram revealing the phylogenetic relationships of AtuGSTs-like proteins. The beta and theta classes identified in other bacterial species are represented by five members in A. tumefaciens C58. In addition, there are three “orphan” sequences that do not fit into any previously recognised GST classes. The eight GST-like genes were cloned, expressed in Escherichia coli and their substrate specificity was determined towards 17 different substrates. The results showed that AtuGSTs catalyse a broad range of reactions, with different members of the family exhibiting quite varied substrate specificity. The 3D structures of AtuGSTs were predicted using molecular modelling. The use of comparative sequence and structural analysis of the AtuGST isoenzymes allowed us to identify local sequence and structural characteristics between different GST isoenzymes and classes. Gene expression profiling was conducted under normal culture conditions as well as under abiotic stress conditions (addition of xenobiotics, osmotic stress and cold and heat shock) to induce and monitor early stress-response mechanisms. The results reveal the constitutive expression of GSTs in A. tumefaciens and a modulation of GST activity after treatments, indicating that AtuGSTs presumably participate in a wide range of functions, many of which are important in counteracting stress conditions. These functions may be relevant to maintaining cellular homeostasis as well as in the direct detoxification of toxic compounds.  相似文献   

13.
14.

Background  

Twenty-eight genes putatively encoding cytosolic glutathione transferases have been identified in the Anopheles gambiae genome. We manually annotated these genes and then confirmed the annotation by sequencing of A. gambiae cDNAs. Phylogenetic analysis with the 37 putative GST genes from Drosophila and representative GSTs from other taxa was undertaken to develop a nomenclature for insect GSTs. The epsilon class of insect GSTs has previously been implicated in conferring insecticide resistance in several insect species. We compared the expression level of all members of this GST class in two strains of A. gambiae to determine whether epsilon GST expression is correlated with insecticide resistance status.  相似文献   

15.
Flury T  Wagner E  Kreuz K 《Plant physiology》1996,112(3):1185-1190
Glutathione S-transferases (GSTs) with additional activities as fatty acid hydroperoxidases were investigated in soybean (Glycine max L.) hypocotyls. Aside from the GSTs present in total soluble tissue extracts, enzyme activities and distinct immunoreactive GST polypeptides were also detected in the intercellular washing fluid. Whereas the intracellular isoenzymes were both constitutive and inducible, apoplastic GST and glutathione peroxidase was detectable only in tissues treated with the known GST inducer 2,3,5-triiodobenzoic acid. Monensin inhibited the induced accumulation of apoplastic GST but did not affect the intracellular isoforms. The discovery of apoplastic inducible GST will be discussed in light of the putative function of these enzymes in plants.  相似文献   

16.
Insect glutathione-S-transferases (GSTs) are grouped in three classes, I, II and recently III; class I (Delta class) enzymes together with class III members are implicated in conferring resistance to insecticides. Class II (Sigma class) GSTs, however, are poorly characterized and their exact biological function remains elusive. Drosophila glutathione S-transferase-2 (GST-2) (DmGSTS1-1) is a class II enzyme previously found associated specifically with the insect indirect flight muscle. It was recently shown that GST-2 exhibits considerable conjugation activity for 4-hydroxynonenal (4-HNE), a lipid peroxidation product, raising the possibility that it has a major anti-oxidant role in the flight muscle. Here, we report the crystal structure of GST-2 at 1.75A resolution. The GST-2 dimer shows the canonical GST fold with glutathione (GSH) ordered in only one of the two binding sites. While the GSH-binding mode is similar to other GST structures, a distinct orientation of helix alpha6 creates a novel electrophilic substrate-binding site (H-site) topography, largely flat and without a prominent hydrophobic-binding pocket, which characterizes the H-sites of other GSTs. The H-site displays directionality in the distribution of charged/polar and hydrophobic residues creating a binding surface that explains the selectivity for amphipolar peroxidation products, with the polar-binding region formed by residues Y208, Y153 and R145 and the hydrophobic-binding region by residues V57, A59, Y211 and the C-terminal V249. A structure-based model of 4-HNE binding is presented. The model suggest that residues Y208, R145 and possibly Y153 may be key residues involved in catalysis.  相似文献   

17.
Artemisinin is a sesquiterpene lactone containing an endoperoxide bridge. It is a promising new antimalarial and is particularly useful against the drug resistant strains of Plasmodium falciparum. It has unique antimalarial properties since it acts through the generation of free radicals that alkylate parasite proteins. Since the antimalarial action of the drug is antagonised by glutathione and ascorbate and has unusual pharmacokinetic properties in humans, we have investigated if the drug is broken down by a typical reductive reaction in the presence of glutathione transferases. Cytosolic glutathione transferases (GSTs) detoxify electrophilic xenobiotics by catalysing the formation of glutathione (GSH) conjugates and exhibit glutathione peroxidase activity towards hydroperoxides. Artemisinin was incubated with glutathione, NADPH and glutathione reductase and GSTs in a coupled assay system analogous to the standard assay scheme with cumene hydroperoxide as a substrate of GSTs. Artemisinin was shown to stimulate NADPH oxidation in cytosols from rat liver, kidney, intestines and in affinity purified preparations of GSTs from rat liver. Using human recombinant GSTs hetelorogously expressed in Escherichia coli, artemisinin was similarly shown to stimulate NADPH oxidation with the highest activity observed with GST M1-1. Using recombinant GSTs the activity of GSTs with artemisinin was at least two fold higher than the reaction with CDNB. Considering these results, it is possible that GSTs may contribute to the metabolism of artemisinin in the presence of NADPH and GSSG-reductase We propose a model, based on the known reactions of GSTs and sesquiterpenes, in which (1) artemisinin reacts with GSH resulting in oxidised glutathione; (2) the oxidised glutathione is then converted to reduced glutathione via glutathione reductase; and (3) the latter reaction may then result in the depletion of NADPH via GSSG-reductase. The ability of artemisinin to react with GSH in the presence of GST may be responsible for the NADPH utilisation observed in vitro and suggests that cytosolic GSTs are likely to be contributing to metabolism of artemisinin and related drugs in vivo.  相似文献   

18.
19.
The effect of Schisandra fructus extract (SFE) on doxorubicin (Dox)-induced cardiotoxicity was investigated in H9c2 cardiomyocytes. Dox, which is an antineoplastic drug known to induce cardiomyopathy possibly through production of reactive oxygen species, induced significant cytotoxicity, intracellular reactive oxygen species (ROS), and lipid peroxidation. SFE treatment significantly increased cell survival up to 25%, inhibited intracellular ROS production in a time- and dose-dependent manner, and inhibited lipid peroxidation induced by Dox. In addition, SFE treatment induced expression of cellular glutathione S-transferases (GSTs), which function in the detoxification of xenobiotics, and endogenous toxicants including lipid peoxides. Analyses of 31,100 genes using Affymetrix cDNA microarrays showed that SFE treatment up-regulated expression of genes involved in glutathione metabolism and detoxification [GST theta 1, mu 1, and alpha type 2, heme oxygenase 1 (HO-1), and microsomal epoxide hydrolase (mEH)] and energy metabolism [carnitine palmitoyltransferase-1 (CPT-1), transaldolase, and transketolase]. These data indicated that SFE might increase the resistance to cardiac cell injury by Dox, at least partly, together with altering gene expression, especially induction of phase II detoxification enzymes.  相似文献   

20.
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S‐transferase (GST) activity. In previous research, two atrazine‐resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine‐glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity‐purified fractions compared to an atrazine‐sensitive population (WCS). One‐dimensional electrophoresis of these fractions displayed an approximate 26‐kDa band, typical of GST subunits. Several phi‐ and tau‐class GSTs were identified by LC‐MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi‐class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号