首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracellular enzymes of microorganisms play an important role in the decomposition of macromolecules in the composting process. In this study, the effects of Tween 80 and rhamnolipid on the extracellular amylase, carboxymethyl cellulose enzyme (CMCase), xylanase and protease of Penicillium simplicissimum isolated from compost were investigated during solid-state fermentation. The results showed that the enzyme activities of amylase, CMCase and xylanase were increased by Tween 80 and rhamnolipid, which, however, had a negative effect on the protease production. The stimulative effects on the three enzymes were quite different during the whole fermentation process. Tween 80 and rhamnolipid also increased the fungal biomass slightly. As a result of the enhanced enzyme activities, the organic matter were also improved to different extents by both surfactants, and the decomposition rates of hemicellulose and cellulose were increased about 8.0% and 11.6% by Tween 80 at best, respectively, as well as 5% and 5.5% by rhamnolipid.  相似文献   

2.
Effect of surfactants on cellulose hydrolysis   总被引:14,自引:0,他引:14  
The effect of surfactants on the heterogeneous enzymatic hydrolysis of Sigmacell 100 cellulose and of steam-exploded wood was studied. Certain biosurfactants (sophorolipid, rhamnolipid, bacitracin) and Tween 80 increased the rate of hydrolysis of Sigmacell 100, as measured by the amount of reducing sugar produced, by as much as seven times. The hydrolysis of steam-exploded wood was increased by 67% in the presence of sophorolipid. At the same time, sophorolipid was found to decrease the amount of enzyme adsorbed onto the cellulose at equilibrium. Sophorolipid had the greatest effect on cellulose hydrolysis when it was present from the beginning of the experiment and when the enzyme/cellulose ratio was low. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
The chemical surfactant Tween 80 and biosurfactant rhamnolipid were respectively added to the composting substrate, a mixture of rice straw and bran, and their effects on the composting process were investigated. Samples were analysed for microbial communities of bacteria, actinomycetes and fungi, carboxymethylcellulose hydrolysis (CMCase) and xylanase activities, cellulose and hemicellulose fractions, water-soluble carbon (WSC) contents in the substrates, organic matter contents and pH values during the composting process. The results showed that both Tween 80 and rhamnolipid had slight stimulatory effects on the microbial populations of bacteria, actinomycetes and fungi. In addition, rhamnolipid increased the peak xylanase activity 15% higher than that of the control, while Tween 80 increased the maximum CMCase activity 35% higher than that of the control. As a result of the increased enzyme activities, treatments with Tween 80 and rhamnolipid were of higher WSC contents than the control during the whole composting process. Accordingly, the composting process was accelerated by the surfactants, since the organic matter was decomposed more quickly and the breakdown of cellulose and hemicellulose was better in the treatments with Tween 80 and rhamnolipid.  相似文献   

4.
表面活性剂对绿色木霉产纤维素酶影响   总被引:9,自引:0,他引:9  
利用绿色木霉,以稻草为唯一碳源,采用液态发酵的方法,分别加入生物表面活性剂鼠李糖脂和化学表面活性剂Tween 80,重点研究了生物表面活性剂对绿色木霉产纤维素酶的影响。实验分析了加入不同浓度的表面活性剂时滤纸酶活、羧甲基纤维素酶活、微晶纤维素酶活及酶液的表面张力随时间的变化情况。结果表明,添加鼠李糖脂能够促进绿色木霉产酶,分别使滤纸酶活、羧甲基纤维素酶活、微晶纤维素酶活最大提高了1.08倍,1.6倍和1.03倍。与Tween 80相比,鼠李糖脂促进产酶的效果明显优于Tween 80。  相似文献   

5.
The adsorption behavior of five surfactants, cetyltrimethylammonium bromide (CTAB), Triton X-100, Tween 80, sodium dodecyl sulfate (SDS), and rhamnolipid, on a Pseudomonas aeruginosa strain and the effect of temperature and ionic strength (IS) on the adsorption were studied. The change of cell surface lypohydrophilic property caused by surfactant adsorption was also investigated. The results showed that the adsorption kinetics of the surfactants on the cell followed the second-order law. CTAB adsorption was the fastest one under the experimental conditions, and it took longest for SDS adsorption to equilibrate because of electric repulsion. The adsorption of Triton X-100 and Tween 80 was characterized by short equilibration time, and rhamnolipid adsorption reached equilibrium in about 90 min. The adsorption isotherms of all the surfactants on the bacterium fitted Freundlich equation well, but the adsorption capacity and mode were variations for the surfactants as indicated by k and n parameters in the equations. The adsorption mode for all the surfactants except SDS is probably hydrophilic interaction because the adsorption totally turned the cell surface to be more hydrophobic. Neither the temperature nor the IS had significant effect on CTAB adsorption, but higher IS significantly enhanced SDS adsorption and modestly strengthened adsorption of Triton X-100, Tween 80, and rhamnolipid. Higher temperature strengthened adsorption of SDS but weakened the adsorption of Triton X-100, Tween 80, and rhamnolipid.  相似文献   

6.
表面活性剂对小麦吸收多环芳烃(PAHs)的影响   总被引:14,自引:1,他引:13  
李滢  区自清  孙铁珩 《生态学报》2000,20(1):99-102
通过研究施加两表面活性剂(Tween80和LAS)后小麦对多环芳烃的吸收情况得出,含有过量菲、芘和苯并(a)芘营养液中生长的小麦PAHs含量受表面活性剂影响显著。在培养40d后,CMC以上Tween80使小麦根中菲、芘和苯并(a)芘含量下降,即促进了小麦茎叶中菲和芘的含量。CMC和CMC以下LAS也使小麦中PAHs含量降低而茎叶中PAHs含量增加,但主要是LAS对植物毒害作用结果,与表面活性剂胶束  相似文献   

7.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

8.
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

9.
Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.  相似文献   

10.
The effects of Tween 80 on the enzymatic hydrolysis of newspaper were tested. By monitoring sugar production it was found that the surfactant (0.1%) increased the rate and extent of cellulose saccharification. Consequently, the rate of enzyme usage in the hydrolysis reactor was improved by 33%. In addition, in the presence of surfactant the recovery of enzymes was higher. Analysis of the enzyme solution showed that with Tween 80 present larger fractions of enzyme remained in solution throughout hydrolysis. Thus, it appears that the surfactant hindered the immobilization of the enzymes on the substrates by reducing the strength of adsorption.  相似文献   

11.
The interaction of B18 peptide with surfactants has been studied by circular dichroism spectroscopy and fluorescence measurements. B18 is the fusogenic motif of the fertilization sea urchin protein. The peptide forms an alpha-helix structure when interacting with positively or negatively charged surfactants below and above the critical micellar concentration (CMC). The alpha-helix formation is due to binding of surfactant monomers rather than the formation of surfactant micelles on the peptide. Fluorescence measurements show that the CMC of the negatively charged surfactant increases in the presence of B18, supporting the fact that there is a strong interaction between the peptide and monomers. Nonionic surfactant monomers have no effect on the peptide structure, whereas the micelles induce an alpha-helical conformation. In this case the helix stabilization results from the formation of surfactant micelles on the peptide.  相似文献   

12.
Despite recent improvement in cellulase enzymes properties, the high cost associated with the hydrolysis step remains a major impediment to the commercialization of full-scale lignocellulose-to-ethanol bioconversion process. As part of a research effort to develop a commercial process for bioconversion of softwood residues, we have examined the potential for recycling enzymes during the hydrolysis of mixed softwood substrate pretreated by organosolv process. We have used response surface methodology to determine the optimal temperature, pH, ionic strength, and surfactant (Tween 80) concentration for maximizing the recovery of bound protein and enzyme activity from the residual substrates after hydrolysis. Data analysis showed that the temperature, pH and surfactant concentration were the major factors governing enzyme desorption from residual substrate. The optimized conditions were temperature 44.4 °C, pH 5.3 and 0.5% Tween 80. The optimal conditions significantly increased the hydrolysis yield by 25% after three rounds of hydrolysis. This bound enzyme desorption combining with free enzyme re-adsorption is a potential method to recover cellulase enzymes and reduce the cost of enzymatic hydrolysis.  相似文献   

13.
木质纤维素是生产生物燃料乙醇的主要原料,其含量丰富、绿色环保以及可再生性,因此有效地利用木质纤维素有望解决能源短缺问题。表面活性剂能够有效地促进木质纤维素的酶解反应,通过探讨不同表面活性剂对酶解反应的影响及机理,为实际的酶解过程找到合适表面活性剂提供一定的理论指导。  相似文献   

14.
Enzymatic hydrolysis of lignocellulosic biomass is limited by rapid cellulase deactivation, consequently requiring large amounts of enzyme to maintain acceptable biomass conversion. In this study, a new approach to improve lignocellulose hydrolysis was investigated. Performing enzymatic hydrolysis of corn stover (CS) in the presence of polymeric–surfactant micelles (PMs) was demonstrated to improve hydrolysis yield to a greater extent than using only surfactant micelles. Application of 2 % (w/w) of polyethylene glycol (PEG 6000) with casein, Tween-20, and Triton X-100 at levels above the critical micelle concentrations increased the hydrolysis yield of CS containing high-bound lignin (extrusion-pretreated) by up to 87.8, 11.7, and 7.5 %, respectively. These PMs were not effective during enzymatic hydrolysis of biomass lacking lignin (Avicel) or alkali-pretreated CS (7.2 % lignin). The main reasons for the enhanced cellulase activity observed due to PEG-casein, PEG-Tween, and PEG-Triton were enhanced cellulase solubilization; reformation of α-helix substructure; and combination of induced cellulase solubilization, α-helix reformation, and chemical changes in the microstructure of biomass, respectively. Deformation of the cellulase substructure during hydrolysis of biomass and its subsequent reformation in the presence of surfactants were shown in this study for the first time. Chemical changes in the microstructure of biomass (e.g., lignin side changes, C–O bonds, and amorphous cellulose) were found to be another potential reason for the effectiveness of surfactants when they are incubated at above 6 g/L for 72 h with biomass.  相似文献   

15.
The subjects of the article are investigations concerning the ability of both Rhodococcus opacus 1CP and mixed bacterial cultures to use selected surfactants as sole carbon and energy source. In a comparative manner the biosurfactants rhamnolipid, sophorolipid and trehalose tetraester, and the synthetic surfactant Tween 80 were examined. Particular emphasis was put on a combinatorial approach to determine quantitatively the degree of surfactant degradation by applying calorimetry, thermodynamic calculations and mass spectrometry, HPLC as well as determination of biomass. The pure bacterial strain R. opacus was only able to metabolize a part of the synthetic surfactant Tween 80, whereas the mixed bacterial cultures degraded all of the applied surfactants. Exclusive for the biosurfactant rhamnolipid a complete microbial degradation could be demonstrated. In the case of the other surfactants only primary degradation was observed.  相似文献   

16.
Pyrene dodecanoic acid (P12), a medium-chain fatty acid to which the fluorescent probe pyrene is covalently linked, showed a considerable increase in fluorescence when the probe was introduced into a hydrophobic environment. Also, when closely packed in an aggregate, an energy transfer between two adjacent molecules of pyrene occurred, resulting in a shift of the peak of the emission spectrum from 378 nm ('monomeric') to 475 nm ('excimeric'). These two respective properties were utilized for the following: (a) A spectrofluorometric measurement of the critical micellar concentration (CMC) of the pyrene fatty acid, defined as the concentration at which the 475 nm emission peak appeared as a consequence of the aggregation of P12 molecules in aqueous solution to form micelles; the CMC of P12 was found to be in the range of 1 to 2 microM. (b) The penetration of P12, from an aqueous solution or dispersion, into unilamellar phospholipid vesicles was determined by monitoring the increase of the fluorescence at 378 nm. The fluorescence increase was time-dependent and proportional to the respective concentrations of P12 or phospholipid vesicles. Substituting the neutral phosphatidylcholine with the negatively-charged phosphatidylserine vesicles resulted in a slower rate as well as lesser total uptake of P12. (c) The uptake of P12 by cells was accompanied by an increase in the monomeric fluorescence emission intensity. Using cells in suspension, this could be followed continuously in a spectrofluorometer equipped with a recorder. The uptake was found to be time-dependent and proportional to P12 concentration.  相似文献   

17.
The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose‐to‐glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
We show that sialosylgangliotetraosylceramide (GM1) is a potent activator of delipidated (sodium cholate- and 1-butanol-extracted) lysosomal rat liver glucocerebroside:beta-glucosidase. Stimulation of 4-methylumbelliferyl-beta-D-glucopyranoside hydrolysis by the beta-glucosidase was markedly dependent upon the concentration of GM1 in the assay medium. Estimations of critical micellar concentration (CMC) performed fluorometrically using the dye N-phenylnaphthylamine revealed two CMC values of GM1 above 18 degrees C; the CMC of the primary micelles (3.32 microM) was temperature-independent whereas that of the secondary micelles decreased with decreasing temperature (17.2 and 10.8 microM at 37 and 20 degrees C, respectively). In the temperature range of 18-39 degrees C, beta-glucosidase activity increased sharply when the GM1 concentration was above the CMC of the secondary micelles. Although a heat-stable factor, purified from the spleen of a patient with Gaucher's disease, had a profound effect on the activation of beta-glucosidase by GM1, it decreased the CMC only slightly (14.8 versus 17.2 microM at 37 degrees C). The heat-stable factor (8 micrograms/ml) changed the shape of the activation curve from sigmoidal to hyperbolic, suggesting that the heat-stable factor permits beta-glucosidase to be activated by primary micelles or monomers. The results of gel filtration chromatography and sucrose gradient centrifugation in H2O and D2O revealed that the activation of beta-glucosidase by GM1 was associated with an increase in the size of the enzyme from 45,800 to 178,500 daltons and an increase in the partial specific volume from 0.697 to 0.740 ml/g. The active, reconstituted beta-glucosidase appears to consist of 50% protein and 50% ganglioside (56 molecules/178,500 g). Concentrations of GM1 below the CMC of secondary micelles increased the rate of inactivation of the enzyme by the irreversible inhibitor conduritol B epoxide at 37 degrees C, indicating that GM1 monomers or primary micelles do interact with the enzyme, even though they do not increase the rate of hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside by the enzyme.  相似文献   

19.
Sonicated lipid micelles, formed from phospholipids isolated from yolks of fresh hen eggs, were used as a model membrane system for studying the effects of several surfactants on membrane properties. The interactions of the surfactants with the model system were followed through the fluorescence of the hydrophobic probe l-anilino-8-naphthalenesulfonate. The surfactants investigated were polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene thioether (Sterox SK), mono-calcium salt of polymerized aryl alkyl sulfonic acids (Daxad 21), and alkylbenzyl quaternary ammonium halide (AHCO DD 50). All surfactants enhanced fluorescence of the membrane-bound probe, and the degree of this enhancement correlated with the previously established phytotoxicity of these substances. The results indicate that surfactants can produce distinct changes in artificial phospholipid membranes and suggest that this lipid interaction may account for altered membrane permeability characteristics in surfactant-treated plants. The effects are observable for surfactant concentrations as low as 0.0001% (w/v), representing an approximate 10-fold increase in sensitivity for detecting surfactant effects compared with previous results on permeability changes in isolated plant cells.  相似文献   

20.
An important issue in the oxidation of pentachlorophenol (PCP) by the enzyme horseradish peroxidase (HRP) is enzyme inactivation during the reaction. This study was initiated to investigate the ability of two nonionic surfactants (Tween 20 and Tween 80) to mitigate HRP inactivation. The surfactants were tested at concentrations below and above their critical micelle concentrations (CMCs). Enhancement of PCP oxidation was observed at sub-CMCs, indicating effective protection of HRP by the two surfactants. Maximum levels of PCP removal were observed when the concentrations of Tween 20 and Tween 80 were 40 and 50% of the CMCs, respectively. At supra-CMCs, both surfactants caused a noticeable reduction in the extent of PCP removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号