首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the effects that the physical and chemical properties of lignin might have on the enzymatic hydrolysis of pretreated lignocellulosic substrates, protease treated lignin (PTL) and cellulolytic enzyme lignin (CEL) fractions, isolated from steam and organosolv pretreated corn stover, poplar, and lodgepole pine, were prepared and characterized. The adsorption of cellulases to the isolated lignin preparations corresponded to a Langmuir adsorption isotherm. It was apparent that, rather than the physical properties of the isolated lignin, the carboxylic acid functionality of the isolated lignin, as determined by FTIR and NMR spectroscopy, had much more of an influence when lignin was added to typical hydrolysis of pure cellulose (Avicel). An increase in the carboxylic content of the lignin preparation resulted in an increased hydrolysis yield. These results suggested that the carboxylic acids within the lignin partially alleviate non-productive binding of cellulases to lignin. To try to confirm this possible mechanism, dehydrogenative polymers (DHP) of monolignols were synthesized from coniferyl alcohol (CA) and ferulic acid (FA), and these model compounds were added to a typical enzymatic hydrolysis of Avicel. The DHP from FA, which was enriched in carboxylic acid groups compared with the DHP from CA, adsorbed a lower mount of cellulases and did not decrease hydrolysis yields when compared to the DHP from CA, which decreased the hydrolysis of Avicel by 8.4%. Thus, increasing the carboxylic acid content of the lignin seemed to significantly decrease the non-productive binding of cellulases and consequently increased the enzymatic hydrolysis of the cellulose.  相似文献   

2.
Non-productive cellulase adsorption onto lignin is a major inhibitory mechanism preventing enzymatic hydrolysis of lignocellulosic feedstocks. Therefore, understanding of enzyme–lignin interactions is essential for the development of enzyme mixtures and processes for lignocellulose hydrolysis. We have studied cellulase–lignin interactions using model enzymes, Melanocarpus albomyces Cel45A endoglucanase (MaCel45A) and its fusions with native and mutated carbohydrate-binding modules (CBMs) from Trichoderma reesei Cel7A. Binding of MaCel45A to lignin was dependent on pH in the presence and absence of the CBM; at high pH, less enzyme bound to isolated lignins. Potentiometric titration of the lignin preparations showed that negatively charged groups were present in the lignin samples and that negative charge in the samples was increased with increasing pH. The results suggest that electrostatic interactions contributed to non-productive enzyme adsorption: Reduced enzyme binding at high pH was presumably due to repulsive electrostatic interactions between the enzymes and lignin. The CBM increased binding of MaCel45A to the isolated lignins only at high pH. Hydrophobic interactions are probably involved in CBM binding to lignin, because the same aromatic amino acids that are essential in CBM–cellulose interaction were also shown to contribute to lignin-binding.  相似文献   

3.
Lignin-derived inhibition is a major obstacle restricting the enzymatic hydrolysis of cell wall polysaccharides especially with softwood lignocellulosics. Enzyme adsorption on lignin is suggested to contribute to the inhibitory effect of lignin. The interaction of cellulases with softwood lignin was studied in the present work with commercial Trichoderma reesei cellulases (Celluclast) and lignin-rich residues isolated from steam pretreated softwood (SPS) by enzymatic and acid hydrolysis. Both lignin preparations inhibited the hydrolysis of microcrystalline cellulose (Avicel) and adsorbed the major cellulases present in the commercial cellulase mixture. The adsorption phenomenon was studied at low temperature (4°C) and at the typical hydrolysis temperature (45°C) by following activities of free and lignin-bound enzymes. Severe inactivation of the lignin-bound enzymes was observed at 45°C, however at 4°C the enzymes retained well their activity. Furthermore, SDS-PAGE analysis of the lignin-bound enzymes indicated that very strong interactions form between the residue and the enzymes at 45°C, because the enzymes were not released from the residue in the electrophoresis. These results suggest that heat-induced denaturation may take place on the surface of softwood lignin at the hydrolysis temperature.  相似文献   

4.

Background

Surfactants have attracted increasing interest for their capability to improve the enzymatic hydrolysis of lignocellulosic biomass. Compared to chemical surfactants, biosurfactants have a broader prospect for industrial applications because they are more environmentally friendly and more effective in some researches. Commercial cellulase preparations are mainly composed of endoglucanases (EGs) and cellobiohydrolases (CBHs) that possess carbohydrate-binding modules (CBMs). However, the effects of lipopeptide-type biosurfactants on enzymatic saccharification of lignocellulose and adsorption behaviors of cellulases with CBMs remain unclear.

Results

In this study, we found that Bacillus sp. W112 could produce a lipopeptide-type biosurfactant from untreated biomass, such as wheat bran and Jerusalem artichoke tuber. The lipopeptide could enhance the enzymatic hydrolysis of dilute acid pretreated Giant Juncao grass (DA-GJG) by fungal and bacterial enzymes. The enhancement increased over a range of temperatures from 30 to 50 °C. Lipopeptide was shown to be more effective in promoting DA-GJG saccharification than chemical surfactants at low dosages, with a best stimulatory degree of 20.8% at 2% loading of the substrates (w/w). Lipopeptide increased the thermostability of EG and CBH in commercial cellulase cocktails. Moreover, the dual effects of lipopeptide on the adsorption behaviors of cellulases were found. It specifically lowered the non-productive binding of cellulases to lignin and increased the binding of cellulases to cellulose. In addition, we investigated the influence of lipopeptide on the adsorption behaviors of CBHs with CBMs for the first time. Our results showed that lipopeptide reduced the adsorption of CBM-deleted CBH to DA-GJG to a greater extent than that of intact CBH while the non-productive binding of intact CBH to lignin was reduced more, indicating that lipopeptide decreased the binding of CBMs onto lignin but not their combination with cellulose.

Conclusions

In this study, we found that lipopeptide from Bacillus sp. W112 promoted the enzymatic hydrolysis of DA-GJG at relative low loadings. The stimulatory effect could be attributed to increasing the cellulase thermostability, reducing non-productive adsorption of cellulases with CBMs caused by lignin and enhancing the binding of cellulases to cellulose.
  相似文献   

5.
The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.  相似文献   

6.
Douglas-fir was SO2-steam pretreated at different severities (190, 200, and 210 °C) to assess the possible negative effect of the residual and isolated lignins on the enzymatic hydrolysis of the steam pretreated substrates. When various isolated lignins were added to the Avicel hydrolysis reactions, the decrease in glucose yields ranged from 15.2% to 29.0% after 72 h. It was apparent that the better hydrolysis yields obtained at higher pretreatment severities were more a result of the greater accessibly of the cellulose rather than any specific change in the non-productive binding of the lignin to the enzymes. FTIR and 13C NMR characterization indicated that the lignin in the steam pretreated substrates became more condensed with increasing severity, suggesting that the cellulases were adsorbed to the lignin by hydrophobic interactions. Electrostatic interactions were also involved as the positively charged cellulase components were preferentially adsorbed to the lignins.  相似文献   

7.

Background

Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus non-productive (binding to lignin) binding of cellulases to lignocellulose, there is currently a poor understanding of individual enzyme adsorption to lignin during the time course of pretreated biomass saccharification.

Results

In this study, we have utilized an FPLC (fast protein liquid chromatography)-based methodology to quantify free Trichoderma reesei cellulases (namely CBH I, CBH II, and EG I) concentration within a complex hydrolyzate mixture during the varying time course of biomass saccharification. Three pretreated corn stover (CS) samples were included in this study: Ammonia Fiber Expansiona (AFEX?-CS), dilute acid (DA-CS), and ionic liquid (IL-CS) pretreatments. The relative fraction of bound individual cellulases varied depending not only on the pretreated biomass type (and lignin abundance) but also on the type of cellulase. Acid pretreated biomass had the highest levels of non-recoverable cellulases, while ionic liquid pretreated biomass had the highest overall cellulase recovery. CBH II has the lowest thermal stability among the three T. reesei cellulases tested. By preparing recombinant family 1 carbohydrate binding module (CBM) fusion proteins, we have shown that family 1 CBMs are highly implicated in the non-productive binding of full-length T. reesei cellulases to lignin.

Conclusions

Our findings aid in further understanding the complex mechanisms of non-productive binding of cellulases to pretreated lignocellulosic biomass. Developing optimized pretreatment processes with reduced or modified lignin content to minimize non-productive enzyme binding or engineering pretreatment-specific, low-lignin binding cellulases will improve enzyme specific activity, facilitate enzyme recycling, and thereby permit production of cheaper biofuels.
  相似文献   

8.

Background

The non-productive adsorption of cellulases onto lignin in biomass is a key issue for the biofuel process economy. It would be helpful to reduce the inhibitory effect of lignin on enzymatic hydrolysis by engineering weak lignin-binding cellulases. Cellulase linkers are highly divergent in their lengths, compositions, and glycosylations. Numerous studies have revealed that linkers can facilitate optimal interactions between structured domains. Recently, efforts have focused on the contributions and mechanisms of carbohydrate-binding modules and catalytic domains that affect lignin affinity and processivity of cellulases, but our understanding of the effects of the linker regions on lignin adsorption and processivity of GH5 processive endoglucanases is still limited.

Results

Eight GH5 endoglucanase 1 variants of varying length, flexibility, and sequence in the linker region were constructed. Their characteristics were then compared to the wild-type enzyme (EG1). Remarkably, significant differences in the lignin adsorption profiles and processivities were observed for EG1 and other variants. Our studies suggest that either the length or the specific amino acid composition of the linker has a prominent influence on the lignin-binding affinity of the enzymes. Comparatively, the processivity may depend primarily on the length of the linker and less so on the specific amino acid composition. EG1-ApCel5A, a variant with better performance in enzymatic hydrolysis in the presence of lignin, was obtained by replacing a longer, flexible linker. In total, up to between 28.2 and 30.1% more reducing sugars were generated from filter paper by EG1-ApCel5A in the presence of lignin compared to EG1.

Conclusions

Our results highlight the relevance of the linker region in the lignin adsorption and processivity of a processive endoglucanase. Our findings suggest that the linker region may be used as a target for the design of more active and weaker lignin-binding cellulases.
  相似文献   

9.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

10.
The conversion of lignocellulosic biomass to fuel ethanol typically involves a disruptive pretreatment process followed by enzyme-catalyzed hydrolysis of the cellulose and hemicellulose components to fermentable sugars. Attempts to improve process economics include protein engineering of cellulases, xylanases and related hydrolases to improve their specific activity or stability. However, it is recognized that enzyme performance is reduced during lignocellulose hydrolysis by interaction with lignin or lignin-carbohydrate complex (LCC), so the selection or engineering of enzymes with reduced lignin interaction offers an alternative means of enzyme improvement. This study examines the inhibition of seven cellulase preparations, three xylanase preparations and a beta-glucosidase preparation by two purified, particulate lignin preparations derived from softwood using an organosolv pretreatment process followed by enzymatic hydrolysis. The two lignin preparations had similar particle sizes and surface areas but differed significantly in other physical properties and in their chemical compositions determined by a 2D correlation HSQC NMR technique and quantitative 13C NMR spectroscopy. The various cellulases differed by up to 3.5-fold in their inhibition by lignin, while the xylanases showed less variability (< or = 1.7-fold). Of all the enzymes tested, beta-glucosidase was least affected by lignin.  相似文献   

11.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

12.
Non-productive adsorption of cellulases onto lignins is an important mechanism that negatively affects the enzymatic hydrolysis of lignocellulose biomass. Here, we examined the non-productive adsorption of two bacterial β-glucosidases (GH1 and GH3) on lignins. The results showed that β-glucosidases can adsorb to lignins through different mechanisms. GH1 β-glucosidase adsorption onto lignins was found to be strongly pH-dependent, suggesting that the adsorption is electrostatically modulated. For GH3 β-glucosidase, the results suggested that the fibronectin type III-like domain interacts with lignins through electrostatic and hydrophobic interactions that can partially, or completely, overcome repulsive electrostatic forces between the catalytic domain and lignins. Finally, the increase of temperature did not result in the increase of β-glucosidases adsorption, probably because there is no significant increase in hydrophobic regions in the β-glucosidases structures. The data provided here can be useful for biotechnological applications, especially in the field of plant structural polysaccharides conversion into bioenergy and bioproducts.  相似文献   

13.
Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.  相似文献   

14.
Lignin separation from natural lignocellulose for the preparation of lignin nanoparticles (LNPs) is often challenging owing to the recalcitrant and complex structure of lignocellulose. This paper reports a strategy for the rapid synthesis of LNPs via microwave-assisted lignocellulose fractionation using ternary deep eutectic solvents (DESs). A novel ternary DES with strong hydrogen bonding was prepared using choline chloride, oxalic acid, and lactic acid in a 1:0.5:1 ratio. Efficient fractionation of rice straw (0.5 × 2.0 cm) (RS) was realized by the ternary DES under microwave irradiation (680 W) within only 4 min, and 63.4% of lignin could be separated from the RS to prepare LNPs with a high lignin purity (86.8%), an average particle size of 48–95 nm, and a narrow size distribution. The mechanism of lignin conversion was also investigated, which revealed that dissolved lignin aggregated into LNPs via ππ stacking interactions.  相似文献   

15.
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7‐3, GHF7‐5, and GHF7‐6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full‐length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus‐insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7‐3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β‐glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell‐1), beta‐glucosidase (β‐glu), and laccase (LacA). GHF7‐3 was the only GHF7 to enhance glucose release by Cell‐1 and β‐glu. Finally, GHF7‐3, Cell‐1, and β‐glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β‐glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7‐3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.  相似文献   

16.
Biorefinery of renewable lignocellulosic biomass to biochemical and biofuel is a promising technology to mitigate global warming and fuel shortage but hydrolysis of recalcitrant lignocellulose to its constitutive components is the bottleneck of the process. This work isolated and characterized a new lignocellulose degrading filamentous fungus from decomposing wood in mangrove area. The strain was identified as Coniochaeta sp. according to ITS rRNA sequences and its phylogenic analysis. The extracellular lignocellulolytic enzymes of this fungal strain, when grown on corn stover, were profiled by LC–MS/MS and exponentially modified protein abundance index (emPAI) based label-free quantitative proteomics approach. We identified 107 potential lignocellulolytic enzymes and their functional classification revealed unique extracellular enzyme system constituting multienzyme complexes of cellulases (29%), hemicellulases (17%), glycoside hydrolases (10%), proteases and peptidases (24%), lignin degrading enzymes (7%) and hypothetical proteins (13%). The growth behavior, biochemical assay and LC–MS/MS analysis of secretome by isolated fungal strain revealed its lignocellulose degradation potential when cultivated with corn stover as a major carbon source.  相似文献   

17.
Recycling of cellulases should lower the overall cost of lignocellulosiic bioconversion processes. In this study, three recycling strategies were evaluated to determine their efficiencies over five successive rounds of hydrolysis. The effect of lignin on recycling was examined by comparing water-washed, steam-exploded birch (WB; 32% lignin) and WB which had been further extracted with alkali and peroxide (PB; 4% lignin). When the cellulases were recovered from the residual substrates after partial hydrolysis of both substrates, the recovered cellulase activity toward the mixture of fresh and residual substrates decreased after each recycling step. When the cellulases in the supernatants were also recycled, up to 20% more activity could be recovered. In both of these cases, the recovered activities did not correspond to the activities expected from the amount of cellulase protein recovered during recycling. The best recovery was obtained when the cellulases were recovered from both the residue and the supernatant after complete hydrolysis of the PB substrate. In this case, all of the originally added cellulase activity could be recovered for four consecutive hydrolysis rounds. However, when the same recycling strategy was carried out using the WB substrate, the recovered cellulase activity declined quickly with each recycling round. In all three of the recycling strategies, lower cellulase activities were recovered from the substrates with higher lignin contents. (c) 1995 John Wiley & Sons, Inc.  相似文献   

18.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

19.
Effectively releasing the locked polysaccharides from recalcitrant lignocellulose to fermentable sugars is among the greatest technical and economic barriers to the realization of lignocellulose biorefineries because leading lignocellulose pre-treatment technologies suffer from low sugar yields, and/or severe reaction conditions, and/or high cellulase use, narrow substrate applicability, and high capital investment, etc. A new lignocellulose pre-treatment featuring modest reaction conditions (50 degrees C and atmospheric pressure) was demonstrated to fractionate lignocellulose to amorphous cellulose, hemicellulose, lignin, and acetic acid by using a non-volatile cellulose solvent (concentrated phosphoric acid), a highly volatile organic solvent (acetone), and water. The highest sugar yields after enzymatic hydrolysis were attributed to no sugar degradation during the fractionation and the highest enzymatic cellulose digestibility ( approximately 97% in 24 h) during the hydrolysis step at the enzyme loading of 15 filter paper units of cellulase and 60 IU of beta-glucosidase per gram of glucan. Isolation of high-value lignocellulose components (lignin, acetic acid, and hemicellulose) would greatly increase potential revenues of a lignocellulose biorefinery.  相似文献   

20.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号