首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal crude microsomes, prepared from proximal rat small intestine, exhibited significant Mg-dependent, Zn-ATPase activity; V max = 23 μmoles Pi/mg protein/hr, K m = 160 nm, and Hill Coefficient, n= 1.5. Partial purification (∼10-fold) was achieved by detergent extraction, and centrifugation through 250 mm sucrose: V max = 268 units, K m = 1 nm, and n= 6. In partially purified preparations, the assay was linear with time to 60 min, and with protein concentration to 1 μg/300 μl. Activities at pH 8 and 8.5 were higher than at pH 7.2. The ATP K m was 0.7 mm, with an optimal ATP/Mg ratio of ∼2. Ca elicited ATPase activity but did not augment the Zn-dependent activity. In partially purified preparations, the homologous salts of Co, Cd, Cu, and Mn exhibited no detectable activity. Vanadate inhibition studies yielded two component kinetics with a K i of 12 μm for the first component, and 96 μm for the second component, in partially purified preparations. Tissue distribution analyses revealed gradients of activity. In the proximal half of the small intestine, Mg/Zn activity increased progressively from crypt to villus tip. In long axis studies, this activity decreased progressively from proximal to distal small bowel. Received: 12 September 2000/Revised 6 January 2001  相似文献   

2.
The fumarate transport system of the bacterium Helicobacter pylori was investigated employing radioactive tracer analysis. The transport of fumarate at micromolar concentrations was saturable with a K M of 220 ± 21 μm and V max of 54 ± 2 nmole/min/mg protein at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors, suggesting the presence of one or more fumarate carriers. The release of fumarate from cells was also saturable with a K M of 464 ± 71 μm and V max of 22 ± 2 nmol/min/mg protein at 20°C. The rates of fumarate influx at millomolar concentrations increased linearly with permeant concentration, and depended on the age of the cells. The transport system was specific for dicarboxylic acids suggesting that fumarate is taken up via dicarboxylate transporters. Succinate and fumarate appeared to form an antiport system. The properties of fumarate transport were elucidated by investigating the effects of amino acids, monovalent cations, pH and potential inhibitors. The results provided evidence that influx and efflux of fumarate at low concentrations from H. pylori cells was a carrier-mediated secondary transport with the driving force supplied by the chemical gradient of the anion. The anaerobic C4-dicarboxylate transport protein identified in the genome of the bacterium appeared to be a good candidate for the fumarate transporter. Received: 11 December 1997/Revised: 7 May 1998  相似文献   

3.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

4.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   

5.
The present work examined the key elements featuring in the various methods used to characterize the erythrocyte sodium-lithium countertransport. Effects of medium composition on lithium efflux were investigated in 20 subjects. Mean lithium efflux (mmol Li/l RBC.h) into a 150 mm sodium medium was significantly higher than efflux into a revised sodium-rich medium (149 mm) containing 1 mm Mg (0.335 ± 0.100 vs. 0.298 ± 0.085 respectively; P < 0.03). Mean lithium efflux into sodium-free media where sodium had been entirely replaced by magnesium, was significantly lower than efflux into a choline-based medium containing only 1 mm magnesium (0.088 ± 0.027 vs. 0.109 ± 0.034 respectively; P= 0.03). Sodium-lithium countertransport activity and the transporter's kinetic profile were measured simultaneously in 35 subjects using traditional choline-based and kinetic methodologies. There was a significant correlation between countertransport activity and maximal rate of turnover (V max) (r= 0.62; P < 0.001); V max values were consistently greater than their corresponding countertransport activities (P < 0.001). On subdividing the subject group into tertiles based on the Michaelis-Menten constant (k m ) values (mm), <75, 75 − 150 and >150, the slopes of the regression lines for each group diminished progressively (0.64, 0.49 and 0.23 respectively), correlations within each group remained significant (P < 0.001, P < 0.001 and P < 0.02). No significant correlation was found between k m values and countertransport activity (r= 0.035; P=ns). Increasing the number of points representing sodium concentrations within the range 0–150 mm, improved the confidence in the emerging estimates of V max and k m obtained by linear transformation. Comparison of kinetic data derived using four different analytical methods (two linear transformations, a nonlinear regression and a statistical method), showed no significant differences between the estimates yielded for either V max (P= 0.88, ns) or k m (P= 0.92, ns). This study has highlighted the critical roles of assay conditions and derivation techniques used when measuring sodium-lithium countertransport, emphasizing the need for standardization of the methodology. Received: 10 December 1996/Revised: 2 October 1997  相似文献   

6.
Transport Pathways for Therapeutic Concentrations of Lithium in Rat Liver   总被引:1,自引:0,他引:1  
Although both amiloride- and phloretin-sensitive Na+/Li+ exchange activities have been reported in mammalian red blood cells, it is still unclear whether or not the two are mediated by the same pathway. Also, little is known about the relative contribution of these transport mechanisms to the entry of therapeutic concentrations of Li+ (0.2–2 mm) into cells other than erythrocytes. Here, we describe characteristics of these transport systems in rat isolated hepatocytes in suspension. Uptake of Li+ by hepatocytes, preloaded with Na+ and incubated in the presence of ouabain and bumetanide, comprised three components. (a) An amiloride-sensitive component, with apparent K m 1.2 mm Li+, V max 40 μmol · (kg dry wt · min)−1, showed increased activity at low intracellular pH. The relationship of this component to the concentration of intracellular H+ was curvilinear suggesting a modifier role of [H+] i . This system persisted in Na+-depleted cells, although with apparent K m 3.8 mm. (b) A phloretin-sensitive component, with K m 1.2 mm, V max 21 μmol · (kg · min)−1, was unaffected by pH but was inactive in Na+-depleted cells. Phloretin inhibited Li+ uptake and Na+ efflux in parallel. (c) A residual uptake increased linearly with the external Li+ concentration and represented an increasing proportion of the total uptake. The results strongly suggest that the amiloride-sensitive and the phloretin-sensitive Li+ uptake in rat liver are mediated by two separate pathways which can be distinguished by their sensitivity to inhibitors and intracellular [H+]. Received: 8 April 1999/Revised: 19 July 1999  相似文献   

7.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

8.
d-Aspartate (d-Asp) uptake by suspensions of cerebral rat brain astrocytes (RBA) maintained in long-term culture was studied as a means of characterizing function and regulation of Glutamate/Aspartate (Glu/Asp) transporter isoforms in the cells. d-Asp influx is Na+-dependent with K m = 5 μm and V max= 0.7 nmoles · min−1· mg protein−1. Influx is sigmoidal as f[Na+] with Na+ K m ∼ 12 μm and Hill coefficient of 1.9. The cells establish steady-state d-Asp gradients >3,000-fold. Phorbol ester (PMA) enhances uptake, and gradients near 6,000-fold are achieved due to a 2-fold increase in V max, with no change in K m . At initial [d-Asp] = 10 μm, RBA take up more than 90% of total d-Asp, and extracellular levels are reduced to levels below 1 μm. Ionophores that dissipate the ΔμNa+ inhibit gradient formation. Genistein (GEN, 100 μm), a PTK inhibitor, causes a 40% decrease in d-Asp. Inactive analogs of PMA (4α-PMA) and GEN (daidzein) have no detectable effect, although the stimulatory PMA response still occurs when GEN is present. Further specificity of action is indicated by the fact that PMA has no effect on Na+-coupled ALA uptake, but GEN is stimulatory. d-Asp uptake is strongly inhibited by serine-O-sulfate (S-O-S), threohydroxy-aspartate (THA), l-Asp, and l-Glu, but not by d-Glu, kainic acid (KA), or dihydrokainate (DHK), an inhibition pattern characteristic of GLAST and EAAC1 transporter isoforms. mRNA for both isoforms was detected by RT-PCR, and Western blotting with appropriate antibodies shows that both proteins are expressed in these cells. Received: 11 January 2001/Revised: 26 March 2001  相似文献   

9.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

10.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

11.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

12.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

13.
The structural determinants of mibefradil inhibition were analyzed using wild-type and inactivation-modified CaV1.2 (α1C) and CaV2.3 (α1E) channels. Mibefradil inhibition of peak Ba2+ currents was dose- and voltage-dependent. An increase of holding potentials from −80 to −100 mV significantly shifted dose-response curves toward higher mibefradil concentrations, namely from a concentration of 108 ± 21 μm (n= 7) to 288 ± 17 μm (n= 3) for inhibition of half of the Cav1.2 currents (IC 50) and from IC 50= 8 ± 2 μm (n= 9) to 33 ± 7 μm (n= 4) for CaV2.3 currents. In the presence of mibefradil, CaV1.2 and CaV2.3 experienced significant use-dependent inhibition (0.1 to 1 Hz) and slower recovery from inactivation suggesting mibefradil could promote transition(s) to an absorbing inactivated state. In order to investigate the relationship between inactivation and drug sensitivity, mibefradil inhibition was studied in inactivation-altered CaV1.2 and CaV2.3 mutants. Mibefradil significantly delayed the onset of channel recovery from inactivation in CEEE (Repeat I + part of the I–II linker from CaV1.2 in the CaV2.3 host channel), in EC(AID)EEE (part of the I–II linker from CaV1.2 in the CaV2.3 host channel) as well as in CaV1.2 E462R, and CaV2.3 R378E (point mutation in the β-subunit binding motif) channels. Mibefradil inhibited the faster inactivating chimera EC(IS1-6)EEE with an IC 50= 7 ± 1 μm (n= 3), whereas the slower inactivating chimeras EC(AID)EEE and CEEE were, respectively, inhibited with IC 50= 41 ± 5 μm (n= 4) and IC 50= 68 ± 9 μm (n= 5). Dose-response curves were superimposable for the faster EC(IS1-6)EEE and CaV2.3, whereas intermediate-inactivating channel kinetics (CEEE, CaV1.2 E462R, and CaV1.2 E462K) were inhibited by similar concentrations of mibefradil with IC 50≈ 55–75 μm. The slower CaV1.2 wild-type and CaV1.2 Q473K channels responded to higher doses of mibefradil with IC 50≈ 100–120 μm. Mibefradil was also found to significantly speed up the inactivation kinetics of slower channels (CaV1.2, CEEE) with little effect on the inactivation kinetics of faster-inactivating channels (CaV2.3). A open-channel block model for mibefradil interaction with high-voltage-activated Ca2+ channels is discussed and shown to qualitatively account for our observations. Hence, our data agree reasonably well with a ``receptor guarded mechanism' where fast inactivation kinetics efficiently trap mibefradil into the channel. Received: 14 March 2001/Revised: 25 June 2001  相似文献   

14.
The effect of l-arginine on transepithelial ion transport was examined in cultured M-1 mouse renal cortical collecting duct (CCD) cells using continuous short circuit current (I SC ) measurements in HCO3 /CO2 buffered solution. Steady state I SC averaged 73.8 ± 3.2 μA/cm2 (n= 126) and was reduced by 94 ± 0.6% (n= 16) by the apical addition of 100 μm amiloride. This confirms that the predominant electrogenic ion transport in M-1 cells is Na+ absorption via the epithelial sodium channel (ENaC). Experiments using the cationic amino acid l-lysine (radiolabeled) as a stable arginine analogue show that the combined activity of an apical system y+ and a basal amino acid transport system y+L are responsible for most cationic amino acid transport across M-1 cells. Together they generate net absorptive cationic amino acid flux. Application of l-arginine (10 mm) either apically or basolaterally induced a transient peak increase in I SC averaging 36.6 ± 5.4 μA/cm2 (n= 19) and 32.0 ± 7.2 μA/cm2 (n= 8), respectively. The response was preserved in the absence of bath Cl (n= 4), but was abolished either in the absence of apical Na+ (n= 4) or by apical addition of 100 μm amiloride (n= 6). l-lysine, which cannot serve as a precursor of NO, caused a response similar to that of l-arginine (n= 4); neither L-NMMA (100 μm; n= 3) nor L-NAME (1 mm; n= 4) (both NO-synthase inhibitors) affected the I SC response to l-arginine. The effects of arginine or lysine were replicated by alkalinization that mimicked the transient alkalinization of the bath solution upon addition of these amino acids. We conclude that in M-1 cells l-arginine stimulates Na+ absorption via a pH-dependent, but NO-independent mechanism. The observed net cationic amino acid absorption will counteract passive cationic amino acid leak into the CCD in the presence of electrogenic Na+ transport, consistent with reports of stimulated expression of Na+ and cationic amino acid transporters by aldosterone. Received: 11 September 2000/Revised: 6 December 2000  相似文献   

15.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

16.
The lipid bilayer technique is used to examine the biophysical properties of anion and cation channels frequently formed by platypus (Ornithorhynchus anatinus) venom (OaV). The OaV-formed anion channel in 250/50 mm KCl cis/trans has a maximum conductance of 857 ± 23 pS (n= 5) in 250/50 mm KCl cis/trans. The current-voltage relationship of this channel shows strong inward rectification. The channel activity undergoes time-dependent inactivation that can be removed by depolarizing voltage steps more positive than the reversal potential for chloride, E Cl , (+40 mV). The reversal potential of the OaV-formed slow current activity in 250/50 mm KCl cis/trans is close to the potassium equilibrium potential (E K ) of −40 mV. The conductance values for the slow channel are 22.5 ± 2.6 pS and 41.38 ± 4.2 pS in 250/50 and 750/50 mm cis/trans, respectively. The gating kinetics of the slow ion channels are voltage-dependent. The channel open probability (P o ) is between 0.1 and 0.8 at potentials between 0 and +140 mV. The channel frequency (F o ) increases with depolarizing voltages between 0 and +140 mV, whereas mean open time (T o ) and mean closed time (T c ) decrease. Ion substitution experiments of the cis solution show that the channel has conductance values of 21.47 ± 2.3 and 0.53 ± 0.1 pS in 250 mm KCl and choline Cl, respectively. The amplitude of the single channel current is dependent on [K+] cis and the current reversal potential (E rev ) responds to increases in [K+] cis by shifting to more negative voltages. The increase in current amplitude as a function of increasing [K+] cis can be best described by a third order polynomial fit. At +140 mV, the values of the maximal single channel conductance (γ max ) and the concentration for half maximal γ (K s ) are 38.6 pS and 380 mm and decline to 15.76 pS and 250 mm at 0 mV, respectively. The ion selectivity of the channel to K+, Na+, Cs+ and choline+ was determined in ion substitution experiments. The permeability values for P K+ :P Na+ :P Cs+ :P choline+ were 1:1:0.63:0.089, respectively. On the other hand, the activity of the slow channel was eliminated (Fig. 7B). The slow channel was reversibly inhibited by [TEA+] trans and the half-maximal inhibitory concentration (K i ) was ∼48 mm. Received: 26 April 1999/Revised: 19 July 1999  相似文献   

17.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

18.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

19.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

20.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号