首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synopsis Twenty humeral heads were collected from 10 adult English Pointer dogs, fixed in 15% formalin containing cetylpyridinium chloride, decalcified, processed for paraffin sections, and cut serially. The articular cartilage was studied by staining principally with Alcian Blue in the presence of 0.4 or 0.9m MgCl2 with and without a van Gieson counterstain. The results of the differential staining procedures demonstrated the existence of two groups of chondrocytes with distinctly different staining affinities. One group reacted intensely for the presence of protein-polysaccharides within its cytoplasm while the other group completely lacked this property. An approximate proportionality of 31 of the protein polysaccharide-positive and-negative chondrocytes was observed in the tangential layer and upper intermediate zone. In the lower intermediate zone, radiate zone, and zone of calcified cartilage, the chondrocyte types were present in equal proportions. Staining with Alcian Blue in the presence of 0.9m MgCl2 with and without a van Gieson counterstain indicated a further subdivision of the protein-polysaccharide positive group of chondrocytes. This blocking technique has been reported to distinguish between chondroitin sulphate and high mol. wt. keratosulphate. Thus, based upon a greatly decreased number of the blue-stained chondrocytes after staining with Alcian Blue in the presence of 0.9m MgCl2 the hypothesis is put forward that some chondrocytes produce primarily chondroitin suphate and others produce both chondroitin sulphate and keratosulphate.  相似文献   

2.
Summary Immunohistochemical staining with commercially available antibodies against chondroitin sulphate (clone CS-56) and keratan sulphate (clone 1/20/5-D-4) was compared with two conventional histochemical methods for the demonstration of glycosaminoglycans, namely Alcian Blue with varying pH and critical electrolyte concentrations, and a modified PAS stain. The antibodies were tested on sections from both frozen and fixed, paraffin embedded human material from umbilical cord, skin, and bronchus. The results showed immunostaining to function equally well on frozen and routine sections, and to be superior to Alcian Blue and PAS with regard to morphological detail. Thus, reactivity with anti-chondroitin sulphate was demonstrated in vessel walls, in small nerves, in the basal membrane zone of the skin, in perichondrium, and in and around chondrocytes. Reactivity with anti-keratan sulphate occurred in chondroid matrix and in perichondrial tissue; however, some cells of the bronchial epithelium and mucous glands also exhibited positivity.  相似文献   

3.
Immunohistochemical staining with commercially available antibodies against chondroitin sulphate (clone CS-56) and keratan sulphate (clone 1/20/5-D-4) was compared with two conventional histochemical methods for the demonstration of glycosaminoglycans, namely Alcian Blue with varying pH and critical electrolyte concentrations, and a modified PAS stain. The antibodies were tested on sections from both frozen and fixed, paraffin embedded human material from umbilical cord, skin, and bronchus. The results showed immunostaining to function equally well on frozen and routine sections, and to be superior to Alcian Blue and PAS with regard to morphological detail. Thus, reactivity with anti-chondroitin sulphate was demonstrated in vessel walls, in small nerves, in the basal membrane zone of the skin, in perichondrium, and in and around chondrocytes. Reactivity with anti-keratan sulphate occurred in chondroid matrix and in perichondrial tissue; however, some cells of the bronchial epithelium and mucous glands also exhibited positivity.  相似文献   

4.
Summary Histochemical analysis of urea-unmasked glycosaminoglycans has been performed in connective tissues of the rat and mouse skin by means of combined staining and enzyme digestion procedures. The staining procedures used were Alcian Blue pH 1.0, Alcian Blue pH 2.5, Aldehyde Fuchsin, periodic acid-Schiff (PAS), Alcian Blue pH 2.5-PAS, high iron diamine and low iron diamine methods. The digestive enzymes employed wereStreptomyces and testicular hyaluronidases, chondroitinases ABC and AC and keratanase. The results obtained indicated that the major components of the glycosaminoglycans in the connective tissues of the skin were hyaluronic acid, dermatan sulphate and chondroitin sulphate A and/or C, whereas the tissues were devoid of keratan sulphate.  相似文献   

5.
Synopsis It may be assumed that, histochemically, carboxyl groups and sulphate half-ester groups of muco electrolyte concentration of the dye baths in the two steps of a sequential Alcian Yellow-Alcian Blue method. In the present study the specificity and reliability of this method has been investigated.When the staining conditions were the same in both steps, the second dye (Alcian Blue) was found to stain mucosubstances in spite of the prior staining with Alcian Yellow. Binding of Alcian Blue was observed in all but very dilute Alcian Blue solutions. The degree of Alcian Blue binding depended on the dye concentration and staining time of the second step (Alcian Blue), and it varied widely for different mucosubstances. Although an incomplete saturation of anionic groups with dye molecules in the first step cannot be completely excluded, it is thought that Alcian Blue displaces Alcian Yellow from the carboxyl and sulphate groups of mucosubstances in tissue sections.It seems that the sequential Alcian Yellow-Alcian Blue method, under the conditions investigated, does not provide a reliable means for differentiating carboxyl and sulphate groups of mucosbstances in tissue sections simultaneously, because the second dye obviously is capable of displacing the first dye from sulphate groups. However, it is possible to distinguish non-sulphated acid mucosaccharides from sulphated mucosaccharides.  相似文献   

6.
Synopsis Acid mucopolysaccharides in dermal papillae of hair follicles from both bald and non-bald regions of the scalp of stump-tailed macaques were studied histochemically. Alcian Blue, Azure A and Periodic acid Schiff methods were used for staining mucopolysaccharides, and Bromphenol Blue for staining basic proteins. In an attempt to identify various polyanions, staining was carried out with Alcian Blue containing different concentrations of electrolytes. Methylation, saponification, mild acid hydrolysis and digestion with streptomyces or testicular hyaluronidase, chondroitinase ABC, or sialidase, were also used. The results indicate that chondroitin sulphate B is present in the papillae of terminal hair follicles in early and intermediate anagen, and degraded chondroitin sulphates are present in the papillae of vellus and terminal hair follicles in late anagen.  相似文献   

7.
Summary To test the value ofStreptomyces hyaluronidase in carbohydrate histochemistry, the effects of digestion with the enzyme on the staining of cartilage and non-cartilaginous tissues by Alcian Blue (AB) pH 1.0, AB pH 2.5, high iron diamine, low iron diamine, aldehyde fuchsin, dialysed iron-ferrocyanide and AB pH 2.5-periodic acid-Schiff were studied by light microscopy. The results obtained lead to the conclusion that theStreptomyces enzyme releases not only hyaluronic acid but also chondroitin sulphates and keratan sulphates in cartilage. Since hyaluronic acid is known to be linked to chondroitin sulphate proteoglycans, the enzyme is of limited value in localizing hyaluronic acid in cartilage. However, it is useful in localizing hyaluronic acid in most non-cartilaginous tissues.  相似文献   

8.
UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.  相似文献   

9.
The critical electrolyte concentration principle was applied to the Alcian Blue staining of rat epiphyseal cartilage proteoglycans for electron microscopy. The distribution and structure of material in glutaraldehyde-fixed cartilage stained at pH 5.8 without MgCl2 and in the presence of 0.05, 0.4, 0.5, 0.9 and 1.0 M MgCl2 was compared with that produced by simultaneous staining and fixation at neutral pH. Both methods resulted in staining of intracellular material within vacuoles as well as staining of non-collagenous matrix material. The structure and distribution of Alcian Blue-positive matrix material consisted of rounded or polygonal granules which accumulated around cells in the proliferative and hypertrophied zones. A similar pattern of distribution was observed in samples stained in the presence of 0.4 or 0.5 M MgCl2. In these cases, however, the stained material exhibited a ribbon-like configuration and granules were few in number. Increasing the MgCl2 concentration to 1.0 M resulted in a marked reduction of Alcian Blue stained material. No ribbon-like structures were observed, and matrix granules were reduced in both number and size. The decreased staining associated with increased electrolyte concentration lends support to the concept that epiphyseal cartilage matrix granules are composed primarily of chondroitin sulphate, and suggest that this same material is present in vacuoles associated with the Golgi apparatus in chondrocytes of the proliferative and hypertrophying zones.  相似文献   

10.
1. Corneas of mouse, rat, guinea pig, rabbit, sheep, cat, dog, pig and cow were quantitatively analysed for water, hydroxyproline, nucleic acid, total sulphated polyanion, chondroitin sulphate/dermatan sulphate and keratan sulphate, several samples or pools of tissue from each species being used. Ferret cornea was similarly analysed for water and hydroxyproline on one pool of eight corneas. Pooled frog (38) and ferret (eight) corneas and a single sample of human cornea were qualitatively examined for keratan sulphate and chondroitin sulphate/dermatan sulphate by electrophoresis on cellulose acetate membranes. Nine species (mouse, frog, rat, guinea pig, rabbit, sheep, cat, pig and cow) were examined by light microscopy and six (mouse, frog, rat, guinea pig, rabbit and cow) by electron microscopy, with the use of Alcian Blue or Cupromeronic Blue in critical-electrolyte-concentration (CEC) methods to stain proteoglycans. 2. Water (% of wet weight), hydroxyproline (mg/g dry wt.) and chondroitin sulphate (mg/g of hydroxyproline) contents were approximately constant across the species, except for mouse. 3. Keratan sulphate contents (mg/g of hydroxyproline) increased with corneal thickness, whereas dermatan sulphate contents decreased. The oversulphated domain of keratan sulphate was absent from mouse and frog corneas, increasing as percentage of total keratan sulphate with increasing corneal thickness. Sulphation of dermatan sulphate was essentially complete (i.e. one sulphate group per disaccharide unit). 4. Chondroitin sulphate/dermatan sulphate proteoglycans were present at the d bands of the collagen fibrils of all species examined, orthogonally arrayed, with high frequency, and occasionally at the e bands. Keratan sulphate proteoglycans were present at the a and c bands of all species examined, but with far higher frequency in the thicker corneas, where keratan sulphate contents were high. 5. Alcian Blue CEC staining showed much higher sulphation of keratan sulphate in thick corneas, e.g. that of cow, than in thin corneas, e.g. that of mouse, in keeping with biochemical analyses. 6. It is suggested that the constancy of interfibrillar volumes is regulated via the swelling and osmotic pressure of the interfibrillar polyanions, by adjustment of the extent of sulphation in two independent proteoglycan populations, to achieve an 'average sulphation' of the total polyanion similar to that of fully sulphated chondroitin sulphate/dermatan sulphate. 7. The balance of synthesis of the two kinds of proteoglycans may be determined by the O2 supply to the avascular cornea. O2 supply may also determine the conversion of chondroitin sulphate into dermatan sulphate.  相似文献   

11.
Synopsis Cultured mouse neuroblastoma C1300 cells were examined for acid glycosaminoglycans using the Alcian Blue and periodic acid-Schiff staining techniques. It was found that the cells contained hyaluronidase-resistant sulphated glycosaminoglycans; hyaluronic acid, chondroitin sulphate, and sialoglycoproteins were not demonstrated. These properties are held in common with foetal mouse brain spongioblasts in culture. In contrast to the latter cells, but in common with some peripheral neuronsin vivo, C1300 cells were stained by the periodic acid-Schiff technique for neutral polysaccharides. The results are discussed in relation to the poor adhesive properties of neuroblastoma cells.  相似文献   

12.
Synopsis The effect of pH on Alcian Blue staining of sialomucins and sulphomucins in human bronchial submucosal glands has been analysed. Using Alcian Blue combined with periodic acid-Schiff, lowering the pH was associated with a decrease in the area staining with Alcian Blue and an increase in that staining with periodic acid-Schiff, save in one bronchus with a large sulphomucin content, in which an increase in the area staining with Alcian Blue was found at pH1.0. In all bronchi, an increase in the intensity of Alcian Blue staining was found at this pH. Sialomucin sensitive to sialidase was found to lose Alcian Blue staining at a higher pH than sialomucin resistant to the enzyme. Some sulphomucins stained with Alcian Blue throughout the pH range studied and some only at the more acid pH levels. At pH1.0 Alcian Blue stained only sulphomucins, thus distinguishing them from sialomucins. Alcian Blue staining combined with the high iron diamine technique has enabled three sulphate groups to be identified: one stained with high iron diamine, the other two did not, and, of the latter, one stained with Alcian Blue at pH 2.6 and1.0, and the other only at pH1.0.  相似文献   

13.
Synopsis The changes in the distribution of acidic glycosaminoglycans in the extracellular matrix of aging human bronchial cartilage have been studied with Alcian Blue using the critical electrolyte technique described by Scott & Dorling (1965). Keratan sulphate was detected in the interterritorial matrix early in the first decade. The factors initiating the synthesis of keratan sulphate by chondrocytes are discussed and a hypothesis is proposed to explain the subsequent localization of this glycosaminoglycan in the extracellular matrix.  相似文献   

14.
Synopsis Disaggregated foetal mouse brain tissue cultures were examined for glycosaminoglycans using Alcian Blue and periodic acid-Schiff staining techniques. It was found that spongioblasts (neuron and glial cell precursors) were rich in sulphated glycosaminoglycans, while astrocytes contained little or no sulphated polymers. The chief acid glycosaminoglycans of the brain reportedin vivo, hyaluronic acid, chondroitin sulphate and sialic acid-bearing polymers, were not demonstrated in the mouse brain cultures. There was a decline in glycosaminoglycan content over two weeks in culture, but during the corresponding periodin vivo an increase has been reported. These deficiencies are possibly correlated with the failure of the cultures to myelinate.  相似文献   

15.
A chromophorics and fluorescent analog of uridine 5'-monophosphate (UMP), a known competitive inhibitor of UDPglucose 4-epimerase was synthesised. This analog, namely 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) uridine 5'-monophosphate, was found to be a powerful reversible inhibitor of UDPglucose 4-epimerase indicating its interaction with the substrate binding site of the enzyme. The extreme sensitivity of the fluorescence emission spectrum of this analog to solvent polarity makes it an excellent probe for the study of the environment at the active site of the enzyme. We report here the effective use of this UMP analog to demonstrate that the hydroxyl groups of the ribose moiety of UMP and presumably the substrates (UDPgalactose and UDPglucose) do not reside in a hydrophobic milieu.  相似文献   

16.
Summary The distribution of hyaluronic acid and proteoglycans in bovine thoracic aorta was studied by Alcian Blue staining of frozen tissue sections under controlled electrolyte conditions with and without prior enzymic digestion. Some sections were digested with chondroitinase ABC, testicular hyaluronidase or bacterial collagenase and subsequent staining permitted conclusions to be drawn about the distribution of specific glycosaminoglycans within the tissue. The total glycosaminoglycan content was maximal in the intima and decreased across the arterial wall to the outermost adventitial layer. The content of proteoglycan containing chondroitin sulphate and/or dermatan sulphate chains paralleled this distribution. However, other glycosaminoglycans also contributed significantly to staining, although there was no evidence for any appreciable concentration of heparin or highly sulphated heparan sulphate.Several experiments indicated that proteoglycan containing chondroitin sulphate and/or dermatan sulphate was associated with elastic laminae which were often seen stained along their periphery. Hyaluronic acid was present at significant concentrations in all locations of the aorta and there was evidence for a similar distribution of heparan sulphate which was possibly also present at a high concentration in the endothelium. Staining of sections after treatment with 4m guanidinium chloride confirmed that this extractant removed most of the proteoglycan from the tissue section.  相似文献   

17.
An early step in the biosynthesis of dermatan sulfate is polymerization to chondroitin, which then is modified by the D-glucuronyl C5-epimerase and mainly 4-O-sulfotransferase. The final structure of the dermatan sulfate side chains varies and our aim was to identify, which of the two enzymes that are crucial to generate dermatan sulfate copolymeric structures in tissues. Dermatan sulfate side chains of biglycan and decorin were prepared from fibroblasts and nasal and articular chondrocytes and characterized regarding detailed structure. Microsomes were prepared from these cells and the activities of D-glucuronyl C5-epimerase and 4-O-sulfotransferase were determined. Chondrocytes from nasal cartilage synthesized biglycan and decorin containing 10%, articular chondrocytes 20--30%, and fibroblast 80% of the uronosyl residues in the l-iduronyl configuration. All three tissues contained high amount of 4-O-sulfotransferase activity. The activity of d-glucuronyl C5-epimerase showed different relationships. Fibroblasts contained a high level of the epimerase activity, articular chondrocytes intermediary activity, and in nasal cartilage it was barely detectable. The data indicate that the activity of the d-glucuronyl C5-epimerase is the main factor for formation of dermatan sulfate in tissues.  相似文献   

18.
G R Flentke  P A Frey 《Biochemistry》1990,29(9):2430-2436
UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UDB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a KD of 0.110 mM and kinact of 0.84 min-1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD+. The inactivation of epimerase by uridine 5'-diphosphate [2H2]chloroacetol proceeds with a primary kinetic isotope effect (kH/kD) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD+ at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD+ is proposed to be the chromophore with lambda max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.  相似文献   

19.
Summary Pseudocysts are unique structures found in adenoid cystic carcinomata of human salivary glands. They were studied in 13 such cases by histochemical and immunohistochemical means. The pseudocysts contained an abundance of mucoid materials which reacted strongly with both Alcian Blue and dialysed iron ferrocyanide. The mucoid material was digested with chondroitinase ABC and heparitinase, but was resistant toStreptomyces hyaluronidase. The inner surfaces of the pseudocysts were strongly reactive for laminin, whereas the interface between the tumour cell nests and the outer stromal area was intensely reactive for fibronectin. Numerous fibronectin-reactive fibrils and blood coagulation factor XIII (F-XIII)-positive cells were distributed extensively in the outer stromal area. The F-XIII-positive cells were also found within some pseudocysts. The results obtained in the present study have shown that the pseudocysts represent a peculiar structure consisting of basement membrane components; laminin, fibronectin, heparan sulphate and chondroitin sulphate.  相似文献   

20.
Each of the known classes of mammalian glycosaminoglycans, with the exception of keratan sulphate, was found in cerebral cortex samples from patients with Alzheimer-type dementia and age-matched controls. These molecules were quantitated, after electrophoresis and staining with Alcian Blue dye, by scanning densitometry. No significant differences were found between the mean levels of each of the above glycosaminoglycans in frontal cortex from patients with dementia compared with controls. An increase (26%; p less than 0.05) in the mean level of hyaluronate, but not of other glycosaminoglycans, was found in temporal cortex samples. On the other hand, the uronic acid content of hyaluronate degradation products following Streptomyces hyaluronidase treatment of brain glycosaminoglycans did not reveal any statistically significant changes in Alzheimer's disease. HPLC of disaccharide products from Arthrobacter chondroitinase AC digests did not reveal any significant changes in sulphate substitution of chondroitin sulphate in Alzheimer brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号