首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li D  Xu XN 《Cell research》2008,18(8):817-822
Natural killer T (NKT) cells are a unique T cell population that have important immunoregulatory functions and have been shown to be involved in host immunity against a range of microorganisms. It also emerges that they might play a role in HIV-1 infection, and therefore be selectively depleted during the early stages of infection. Recent studies are reviewed regarding the dynamics of NKT depletion during HIV-1 infection and their recovery under highly active antiretroviral treatment (HAART). Possible mechanisms for these changes are proposed based on the recent developments in HIV pathogenesis. Further discussions are focused on HIV's disruption of NKT activation by downregulating CDld expression on antigen presentation cells (APC). HIV-1 protein Nefis found to play the major role by interrupting the intracellular trafficking of nascent and recycling CDld molecules.  相似文献   

2.
Whereas the acquired T cell-mediated protection against intracellular pathogens such as Leishmania major has been well studied in the past, the cells and mechanisms involved in their innate control are still poorly understood. Here, we investigated the role of natural killer T (NKT) cells in a high dose L. major mouse infection model. In vitro, L. major only weakly stimulated NKT cells and antagonized their response to the prototypic NKT cell ligand alpha-galactosylceramide, indicating that L. major partially escapes the activation of NKT cells. NKT cell deficiency as analyzed by subcutaneous infection of Jalpha281-/- mice (lacking invariant CD1d-restricted NKT cells) and CD1-/- mice (lacking all CD1d-restricted NKT cells) led to a transient increase in skin lesions, but did not impair the clinical cure of the infection, NK cell cytotoxicity, the production of IFN-gamma, the expression of inducible nitric oxide synthase, and the control of the parasites in the lymph node. In the spleen, however, NKT cells were required for NK cell cytotoxicity and early IFN-gamma production, they lowered the parasite burden, and exerted bystander effects on Leishmania antigen-specific T cell responses, most notably after systemic infection. Thus, NKT cells fulfill organ-specific protective functions during infection with L. major, but are not essential for parasite control.  相似文献   

3.
CD1d-restricted NKT cells express an invariant TCR and have been demonstrated to play an important regulatory role in a variety of immune responses. Invariant NKT cells down-regulate autoimmune responses by production of type 2 cytokines and can initiate antitumor and antimicrobial immune responses by production of type 1 cytokines. Although defects in the (invariant) Valpha24+Vbeta11+ NKT cell population have been observed in patients with cancer and autoimmune diseases, little is known regarding the protective role of Valpha24+Vbeta11+ NKT cells in human infectious disease. In a cross-sectional study in HIV-1-infected individuals, we found circulating numbers of Valpha24+Vbeta11+ NKT cells to be reduced, independent of CD4+ T cell counts, CD4:CD8 ratios, and viral load. Because a small minority of Valpha24+Vbeta11+ NKT cells of healthy donors expressed HIV-1 (co)receptors and the vast majority of Valpha24+Vbeta11+ NKT cells in HIV-1-infected individuals expressed the Fas receptor, the depletion was more likely due to Fas-mediated apoptosis than to preferential infection of Valpha24+Vbeta11+ NKT cells by HIV-1. A longitudinal cohort study, in which patients were analyzed before seroconversion and 1 and 5 years after seroconversion, demonstrated that a large proportion of the depletion occurred within the first year postseroconversion. In this longitudinal study no evidence was found to support an important role of Valpha24+Vbeta11+ NKT cells in determining the rate of progression during HIV-1 infection.  相似文献   

4.
NKT cells and viral immunity   总被引:4,自引:0,他引:4  
Over the past 10 years a new population of cells has been the focus of much attention. The functions of these unique lymphocytes, characterized by the concomitant expression of T- and NK-cell markers and thus termed NKT cells, have been implicated in many diverse aspects of immunity, including regulation of autoimmune disorders, control of tumour growth and spread, and defence against a number of pathogens. Although much debate still remains as to the natural role of NKT cells, it is clear that these cells have the capacity, either constitutively or postactivation, to promote an amazing array of immunoregulatory responses. The involvement of NKT cells in viral immune-surveillance and their ability to induce protection against pathogens once activated make them an attractive clinical target.  相似文献   

5.
TCRalphabeta(+)NK1.1(+) (NKT) cells are known to express various NK cell-associated molecules including the Ly49 family of receptors for MHC class I, but its functional significance has been unclear. Here, we examined the expression of Ly49A, C/I and G2 on various NKT cell populations from normal and MHC class I-deficient C57BL/6 mice as well as their responsiveness to alpha-galactosylceramide (alpha-GalCer), a potent stimulator of CD1d-restricted NKT cells. The frequency and the level of Ly49 expression varied among NKT cells from different tissues, and were regulated by the expression of MHC class I and CD1d in the host. Stimulation of various NKT cells with alpha-GalCer suggested that Ly49 expression inversely correlates with the responsiveness of NKT cells to alpha-GalCer. Moreover, alpha-GalCer presented by normal dendritic cells stimulated purified Ly49(-), but not Ly49(+), splenic NKT cells, whereas MHC class I-deficient dendritic cells presented alpha-GalCer to both Ly49(+) and Ly49(-) NKT cells equally well. Therefore, MHC class I on APCs seems to inhibit activation of NKT cells expressing Ly49. To further characterize CD1d-restricted NKT cells, we generated an alpha-GalCer-responsive NKT cell line from thymocytes. The line could only be generated from Ly49(-)NK1.1(+)CD4(+) thymocytes but not from other NKT cell subsets, and it lost expression of NK1.1 and CD4 during culture. Together, these results indicate the functional significance of Ly49 expression on NKT cells.  相似文献   

6.
Natural killer T (NKT) cells are a subset of regulatory T lymphocytes that recognize glycolipid antigens presented by the major histocompatibility complex class I-related glycoprotein CD1d. NKT cells have been implicated in regulating the progression of Type 1 diabetes (T1D) in human patients and in an animal model for T1D. In addition, glycolipid agonists of NKT cells have been successful in preventing diabetes in mice, raising enthusiasm for the development of NKT cell-based therapies for T1D.  相似文献   

7.
The invariant (i) NKT cells represent unique T lymphocytes expressing TCRValpha14. Although iNKT cells have been regarded as T lymphocytes expressing NK1.1, they do not consistently express this marker. NK1.1 allows recognition of "missing-self" and thus controls inhibition/activation of iNKT cells. It is thus tempting to assume that iNKT cells participate in the regulation of host immune responses during microbial infection by controlling NK1.1 expression. These findings shed light on the unique role of iNKT cells in microbial infection and provide an evidence for unique aspects of the NK1.1 on these cells as a regulatory molecule.  相似文献   

8.
9.
10.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

11.
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal–maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d−/− mice. We have also shown that infected- as well as uninfected-CD1d−/− mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d−/− placentas contained significantly higher percentages of CD4+ and CD8+ T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4+ T cells in CD1d−/− mice. In infected WT pregnant mice, the numbers of uterine CD4+ and CD8+ T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d−/− mice. An increase in the percentage of CD8+ T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d−/− mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal–fetal interface in the presence or absence of Chlamydia infection.  相似文献   

12.
The common gamma-chain cytokine, IL-21, is produced by CD4(+) T cells and mediates potent effects on a variety of immune cells including NK, T, and B cells. NKT cells express the receptor for IL-21; however, the effect of this cytokine on NKT cell function has not been studied. We show that IL-21 on its own enhances survival of NKT cells in vitro, and IL-21 increases the proliferation of NKT cells in combination with IL-2 or IL-15, and particularly with the CD1d-restricted glycosphingolipid Ag alpha-galactosylceramide. Similar to its effects on NK cells, IL-21 enhances NKT cell granular morphology, including granzyme B expression, and some inhibitory NK receptors, including Ly49C/I and CD94. IL-21 also enhanced NKT cell cytokine production in response to anti-CD3/CD28 in vitro. Furthermore, NKT cells may be subject to autocrine IL-21-mediated stimulation because they are potent producers of this cytokine following in vitro stimulation via CD3 and CD28, particularly in conjunction with IL-12 or following in vivo stimulation with alpha-galactosylceramide. Indeed, NKT cells produced much higher levels of IL-21 than conventional CD4 T cells in this assay. This study demonstrates that NKT cells are potentially a major source of IL-21, and that IL-21 may be an important factor in NKT cell-mediated immune regulation, both in its effects on NK, T, and B cells, as well as direct effects on NKT cells themselves. The influence of IL-21 in NKT cell-dependent models of tumor rejection, microbial clearance, autoimmunity, and allergy should be the subject of future investigations.  相似文献   

13.
The unconventional lifestyle of NKT cells   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
王伟  杜美  陈正望 《生物磁学》2011,(1):158-160
然杀伤T细胞(natural killer T cell,NKT细胞)是一种特殊的淋巴细胞亚群,具有部分T细胞和NK细胞的特征。与这些细胞不同的是,NKT细胞不仅能够识别醣脂类抗原,还在激活后产生促炎症因子和抗炎症因子。由于这些特性,NKT细胞在炎症和免疫方面的研究越来越热。动脉粥样硬化是一种受免疫调节的炎性疾病,因此对NKT细胞在该疾病中作用的研究也逐渐开展起来。  相似文献   

16.
17.
Although the means by which NK cells may contribute to anti viral defense are still incompletely understood, various studies merge to a better comprehension of pathways that mediate NK cell activation (NK cell mediated cytotoxic activity and cytokine production) and their implications during the immune response towards a variety of viruses. Characterization of a specific expression pattern of ligands for NK receptors on virally infected cells and consequent modulation of NK cell activity have provided new insights in the field. A major break through to a direct evidence of a role for NK cells and NK cell receptors in immune protection against viral infection, was the recent implication of the murine activating Ly49H receptors in immune protection against MCMV infection. Although much remains to be learned concerning implication of NK cells in HIV infection, various reports have documented alteration in NK cell function and numbers during the course of HIV infection or treatment of AIDS. This review will focus on the current knowledge about the factors which might influence NK cell activation during various viral challenge and an emerging view of their alteration during HIV infection.  相似文献   

18.
19.
T and NK cells play a key role in resistance to Trypanosoma cruzi infections, mainly through IFN-gamma production. The expression of T and NK cells surface markers was studied in NWNA spleen cells of resistant C3H and susceptible BALB/c mice that release IFN-gamma in the early and late acute infection, respectively. In the progressively enlarged spleens, we found: (a) an increased percentage and number of NK blast cells as early as at 2 days post-infection (pi), (b) an enrichment of T and NK cells, in both the total and blast populations, during the late acute phase. At 17 days pi, there was also an accumulation of TCR- alphabeta+DX5+, NKT cells, mainly in resistant mice. At 21 days pi, the enrichment of NK cells ceased, while spleen cells and the T cell compartment continued their expansion. In the chronic stage, TCR-alphabeta+ blasts were expanded in both mouse strains, but NK blasts increased only in BALB/c that, unlike C3H mice, release IFN-gamma. As T and NK cell proliferation is not always associated to IFN-gamma release the experimental downregulation of their expansion to avoid tissue damage could be explored.  相似文献   

20.
Previous clinical trials in HIV-infected patients involving infusion of T cells protected by an antiviral gene have failed to show any therapeutic benefit. The value of such a treatment approach is thus still highly controversial. In this study, the anticipated effects of gene-modified cells on virus and T-cell kinetics are analysed by mathematical modeling. Because technically only a small fraction of all T cells in a patient can be manipulated ex vivo, therapeutic success will depend on the accumulation of gene-modified cells after infusion into the patient by in vivo selection. Our simulations predict that a significant therapeutic benefit is conferred only by antiviral genes that inhibit HIV replication before virus integration (class I genes). Genes that inhibit viral protein expression (class II, used in previous clinical trials), require a much higher inhibitory activity than class I genes to promote the regeneration of T cells and reduce the viral load. Inhibition of virus assembly and release alone (class III) confers no selective advantage to the T cell and is therefore ineffective unless combined with class I (or, possibly, class II) genes. Also crucial in determining the clinical outcome are the regenerative capacity of the gene-modified cells and the level of HIV replication in the patient. These results can be important for guiding future strategies in the field of gene therapy for HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号