首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine''s problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture.  相似文献   

2.
At the macrostructure level of language milestones, language acquisition follows a nearly identical course whether children grow up with one or with two languages. However, at the microstructure level, experimental research is revealing that the same proclivities and learning mechanisms that support language acquisition unfold somewhat differently in bilingual versus monolingual environments. This paper synthesizes recent findings in the area of early bilingualism by focusing on the question of how bilingual infants come to apply their phonetic sensitivities to word learning, as they must to learn minimal pair words (e.g. ‘cat’ and ‘mat’). To this end, the paper reviews antecedent achievements by bilinguals throughout infancy and early childhood in the following areas: language discrimination and separation, speech perception, phonetic and phonotactic development, word recognition, word learning and aspects of conceptual development that underlie word learning. Special consideration is given to the role of language dominance, and to the unique challenges to language acquisition posed by a bilingual environment.  相似文献   

3.
When and how do infants develop a semantic system of words that are related to each other? We investigated word–word associations in early lexical development using an adaptation of the inter-modal preferential looking task where word pairs (as opposed to single target words) were used to direct infants’ attention towards a target picture. Two words (prime and target) were presented in quick succession after which infants were presented with a picture pair (target and distracter). Prime–target word pairs were either semantically and associatively related or unrelated; the targets were either named or unnamed. Experiment 1 demonstrated a lexical–semantic priming effect for 21-month olds but not for 18-month olds: unrelated prime words interfered with linguistic target identification for 21-month olds. Follow-up experiments confirmed the interfering effects of unrelated prime words and identified the existence of repetition priming effects as young as 18 months of age. The results of these experiments indicate that infants have begun to develop semantic–associative links between lexical items as early as 21 months of age.  相似文献   

4.
Many studies have shown that during the first year of life infants start learning the prosodic, phonetic and phonotactic properties of their native language. In parallel, infants start associating sound sequences with semantic representations. However, the question of how these two processes interact remains largely unknown. The current study explores whether (and when) the relative phonotactic probability of a sound sequence in the native language has an impact on infants’ word learning. We exploit the fact that Labial-Coronal (LC) words are more frequent than Coronal-Labial (CL) words in French, and that French-learning infants prefer LC over CL sequences at 10 months of age, to explore the possibility that LC structures might be learned more easily and thus at an earlier age than CL structures. Eye movements of French-learning 14- and 16-month-olds were recorded while they watched animated cartoons in a word learning task. The experiment involved four trials testing LC sequences and four trials testing CL sequences. Our data reveal that 16-month-olds were able to learn the LC and CL words, while14-month-olds were only able to learn the LC words, which are the words with the more frequent phonotactic pattern. The present results provide evidence that infants’ knowledge of their native language phonotactic patterns influences their word learning: Words with a frequent phonotactic structure could be acquired at an earlier age than those with a lower probability. Developmental changes are discussed and integrated with previous findings.  相似文献   

5.
Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that this ability may be useful for bootstrapping language-specific cues to segmentation. It is unknown, however, whether performance shown in small-scale laboratory demonstrations of “statistical learning” can scale up to allow learning of the lexicons of natural languages, which are orders of magnitude larger. Artificial language experiments with adults can be used to test whether the mechanisms of statistical learning are in principle scalable to larger lexicons. We report data from a large-scale learning experiment that demonstrates that adults can learn words from unsegmented input in much larger languages than previously documented and that they retain the words they learn for years. These results suggest that statistical word segmentation could be scalable to the challenges of lexical acquisition in natural language learning.  相似文献   

6.
Human beings are imitative generalists. We can immediately imitate a wide range of behaviors with great facility, whether they be vocal maneuvers, body postures, or actions on objects. The ontogeny of this skill has been an enduring question in developmental psychology. Classical theory holds that the ability to imitate facial gestures is a milestone that is passed at about one year. Before this time infants are thought to lack the perceptual-cognitive sophistication necessary to match a gesture they can see with one they cannot see themselves perform. A second developmental milestone is the capacity for deferred imitation, i.e. imitation of an absent model. This is said to emerge at about 18 months, in close synchrony with other higher-order activities such as object permanence and tool use, as part of a general cognitive shift from a purely sensory-motor level of functioning to one that allows language. Research suggests that the imitative capacity of young infants has been underestimated. Human infants are capable of imitating facial gestures at birth, with infants less than one day old manifesting this skill. Moreover recent experiments have established deferred imitation well before the predicted age of 18 months. Studies discussed here show that 9-month-olds can duplicate acts after a delay of 24 hours, and that 14-month-olds can retain and duplicate as many as five actions over a 1-week delay. These new findings re-raise questions about the relation between nonverbal cognitive development and language development: What aspects, if any, of these two domains are linked? A hypothesis is delineated that predicts certain very specific relations between particular cognitive and semantic achievements during the one-word stage, and data are reported supporting this hypothesis. Specifically, relations are reported between: (a) the development of object permanence and the use of words encoding disappearance, (b) means-ends understanding (as manifest in tool use) and words encoding success and failure, and (c) categorization behavior and the onset of the naming explosion. This research on human ontogeny suggests close and highly specific links between aspects of early language and thought.  相似文献   

7.
Brain responses in 4-month-old infants are already language specific   总被引:1,自引:0,他引:1  
Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age.  相似文献   

8.
Early language acquisition: cracking the speech code   总被引:5,自引:0,他引:5  
Infants learn language with remarkable speed, but how they do it remains a mystery. New data show that infants use computational strategies to detect the statistical and prosodic patterns in language input, and that this leads to the discovery of phonemes and words. Social interaction with another human being affects speech learning in a way that resembles communicative learning in songbirds. The brain's commitment to the statistical and prosodic patterns that are experienced early in life might help to explain the long-standing puzzle of why infants are better language learners than adults. Successful learning by infants, as well as constraints on that learning, are changing theories of language acquisition.  相似文献   

9.
Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus), a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.  相似文献   

10.
From early in life, infants watch other people''s actions. How do young infants come to make sense of actions they observe? Here, we review empirical findings on the development of action understanding in infancy. Based on this review, we argue that active action experience is crucial for infants'' developing action understanding. When infants execute actions, they form associations between motor acts and the sensory consequences of these acts. When infants subsequently observe these actions in others, they can use their motor system to predict the outcome of the ongoing actions. Also, infants come to an understanding of others’ actions through the repeated observation of actions and the effects associated with them. In their daily lives, infants have plenty of opportunities to form associations between observed events and learn about statistical regularities of others’ behaviours. We argue that based on these two forms of experience—active action experience and observational experience—infants gradually develop more complex action understanding capabilities.  相似文献   

11.
Four experiments investigated the ability of a border collie (Chaser) to acquire receptive language skills. Experiment 1 demonstrated that Chaser learned and retained, over a 3-year period of intensive training, the proper-noun names of 1022 objects. Experiment 2 presented random pair-wise combinations of three commands and three names, and demonstrated that she understood the separate meanings of proper-noun names and commands. Chaser understood that names refer to objects, independent of the behavior directed toward those objects. Experiment 3 demonstrated Chaser's ability to learn three common nouns - words that represent categories. Chaser demonstrated one-to-many (common noun) and many-to-one (multiple-name) name-object mappings. Experiment 4 demonstrated Chaser's ability to learn words by inferential reasoning by exclusion - inferring the name of an object based on its novelty among familiar objects that already had names. Together, these studies indicate that Chaser acquired referential understanding of nouns, an ability normally attributed to children, which included: (a) awareness that words may refer to objects, (b) awareness of verbal cues that map words upon the object referent, and (c) awareness that names may refer to unique objects or categories of objects, independent of the behaviors directed toward those objects.  相似文献   

12.
Beginning in the 1960s the first systematic projects dedicated to testing whether great apes could acquire some aspects of human language were conducted. The ape subjects demonstrated remarkable capacities to learn and use elements of either sign language or an artificial language. The results from research across several laboratories drew a mixture of excitement and skepticism, and critiques and debates have ensued since the earliest reports were published. This continues today. Terrace (2019, Nim: A chimpanzee who learned sign language. New York, NY: Columbia University Press) repeats many of the same points made decades earlier, and has added some additional critiques. That scientists hold different perspectives on what to conclude from ape language studies is expected. However, any conclusion one draws should be based upon available evidence, which we outline in this review. We also address the critiques offered by Terrace (2019), including the stance that apes cannot understand or use words. Focusing on symbol use by chimpanzees and bonobos we describe evidence that argues for understanding of words, including capacities for declarative communication and intersubjectivity found in these apes. We conclude that the many decades of research using a variety of symbol systems challenges the absolutist position that chimpanzees and bonobos cannot learn language or understand the concept of a word.  相似文献   

13.
Argumentation is one of the central practices in science learning and helps deepen students’ conceptual understanding. Students should learn how to communicate ideas including procedure tests, data interpretations, and investigation outcomes in verbal and written forms through argument structure. This article presents a negotiation model to show how argument can be a vehicle to drive students to learn core ideas of density. The negotiation model consists of five phases: (1) creating a testable question, (2) constructing an argument in groups, (3) critiquing arguments publicly, (4) advancing students’ arguments, and (5) writing and reflecting individually.  相似文献   

14.
It is a long established convention that the relationship between sounds and meanings of words is essentially arbitrary—typically the sound of a word gives no hint of its meaning. However, there are numerous reported instances of systematic sound–meaning mappings in language, and this systematicity has been claimed to be important for early language development. In a large-scale corpus analysis of English, we show that sound–meaning mappings are more systematic than would be expected by chance. Furthermore, this systematicity is more pronounced for words involved in the early stages of language acquisition and reduces in later vocabulary development. We propose that the vocabulary is structured to enable systematicity in early language learning to promote language acquisition, while also incorporating arbitrariness for later language in order to facilitate communicative expressivity and efficiency.  相似文献   

15.
Happy Art     
This article looks at how arts integration can boost the language development of limited English proficient students in kindergarten through second grade. I first review existing research on how young children learn and describe the special challenges faced by children who must learn in an unfamiliar language. I then identify arts-based mechanisms that boost the language development of limited English proficient students and examine strategies used by a successful urban arts-and-literacy program to enhance the language development of English language learners in the primary grades.  相似文献   

16.
In Japanese, vowel duration can distinguish the meaning of words. In order for infants to learn this phonemic contrast using simple distributional analyses, there should be reliable differences in the duration of short and long vowels, and the frequency distribution of vowels must make these differences salient enough in the input. In this study, we evaluate these requirements of phonemic learning by analyzing the duration of vowels from over 11 hours of Japanese infant-directed speech. We found that long vowels are substantially longer than short vowels in the input directed to infants, for each of the five oral vowels. However, we also found that learning phonemic length from the overall distribution of vowel duration is not going to be easy for a simple distributional learner, because of the large base-rate effect (i.e., 94% of vowels are short), and because of the many factors that influence vowel duration (e.g., intonational phrase boundaries, word boundaries, and vowel height). Therefore, a successful learner would need to take into account additional factors such as prosodic and lexical cues in order to discover that duration can contrast the meaning of words in Japanese. These findings highlight the importance of taking into account the naturalistic distributions of lexicons and acoustic cues when modeling early phonemic learning.  相似文献   

17.
Evidence for spontaneous mappings between the dimensions of number and length, time and length, and number and time, has been recently described in preverbal infants. It is unclear, however, whether these abilities reflect the existence of privileged mappings between certain quantitative dimensions, like number, space and time, or instead the existence of a magnitude system underlying the representation of any quantitative dimension, and allowing mappings across those dimensions. Four experiments, using the same methods from previous research that revealed a number-length mapping in eight-month-old infants, investigated whether infants of the same age establish mappings between number and a different, non-spatial continuous dimension: level of brightness. We show that infants are able to learn and productively use mappings between brightness and number when they are positively related, i.e., larger numbers paired with brighter or higher contrast levels, and fail when they are inversely related, i.e., smaller numbers paired with brighter or higher contrast levels, suggesting that they are able to learn this mapping in a specific direction. However, infants not only do not show any baseline preference for any direction of the number-brightness mapping, but fail at transferring the discrimination from one dimension (number) to the other (brightness). Although infants can map multiple dimensions to one another, the number-length mapping may be privileged early in development, as it is for adults.  相似文献   

18.
This paper outlines a neurocognitive approach to human language, focusing on inflectional morphology and grammatical function in English. Taking as a starting point the selective deficits for regular inflectional morphology of a group of non-fluent patients with left hemisphere damage, we argue for a core decompositional network linking left inferior frontal cortex with superior and middle temporal cortex, connected via the arcuate fasciculus. This network handles the processing of regularly inflected words (such as joined or treats), which are argued not to be stored as whole forms and which require morpho-phonological parsing in order to segment complex forms into stems and inflectional affixes. This parsing process operates early and automatically upon all potential inflected forms and is triggered by their surface phonological properties. The predictions of this model were confirmed in a further neuroimaging study, using event-related functional magnetic resonance imaging (fMRI), on unimpaired young adults. The salience of grammatical morphemes for the language system is highlighted by new research showing that similarly early and blind segmentation also operates for derivationally complex forms (such as darkness or rider). These findings are interpreted as evidence for a hidden decompositional substrate to human language processing and related to a functional architecture derived from non-human primate models.  相似文献   

19.
Food transfer between adults and infants is common in many marmoset and tamarin monkeys, and is often accompanied by vocalizations. We hypothesized that vocalizations by adults in a food transfer context creates an opportunity for infants to learn not only what foods are appropriate but what vocalizations are appropriate in feeding contexts. We studied the development of feeding behavior and food-associated vocalizations in 10 infant cotton-top tamarins through the first 20 wks of life. Infants obtained solid food through transfers from older group members, primarily the adult male, beginning at weeks 5–6. Both adults and infants vocalized during food transfers with adults, producing rapid sequences of the call types adults normally give when feeding. Infants were usually successful in obtaining food primarily when the adult was vocalizing. The sooner infants were active participants in food transfers, the sooner they began to feed independently. In the early weeks, infants produced a large number of vocal types during food transfers, but with increasing age there was a steady increase in the number of adult-form food calls and a reduction in other, non-food-associated calls. Infants that fed independently at an early age produced fewer non-food-associated calls by the last month of observation. Infants called at higher rates to their most preferred food. Food transfers accompanied by vocalizations may provide an opportunity for infants to learn about appropriate foods as well as the vocalizations that accompany feeding in adults, and may represent a form of 'coaching' or information donation by adults.  相似文献   

20.
Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号