首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

2.
Social Hymenoptera are important models for analyzing functional brain plasticity. These insects provide the opportunity to learn how individuals' social roles are related to flexible investment in different brain regions. We assessed how age, sex, and individual behavior influence brain development in a primitively eusocial paper wasp, Mischocyttarus mastigophorus. Previous research in other species has demonstrated experience-dependent changes in central and primary sensory centers in the brain. The mushroom body (MB) calyx is a central processing region involved in sensory integration, learning and memory and may be particularly relevant to social behavior. We extend earlier cross-sectional studies of female brain/behavior associations by measuring sex- and age-related differences in MB calyx volume, and by quantifying optic lobe and antennal lobe development. Age did predict MB development: calyx neuropils increased in volume with age. We show that MB development differs between the sexes. Males, who frequently depart to seek mating opportunities, have larger MB calyx collars (which receive optic input) than females. In contrast, females have augmented predominantly antenna-innervated MB calyx lips, which may be useful for nestmate recognition and interactions on the nest. Sex differences in MB development increased with age. After accounting for age and sex effects, social aggression was positively correlated with MB calyx volume for both sexes. We found little evidence for relationships among sex, age, or behavior and the volumes of peripheral sensory processing structures. We discuss the implications of gender- and age-related effects on brain volume in relation to male and female life history and reproductive success.  相似文献   

3.
The social brain hypothesis assumes the evolution of social behaviour changes animals'' ecological environments, and predicts evolutionary shifts in social structure will be associated with changes in brain investment. Most social brain models to date assume social behaviour imposes additional cognitive challenges to animals, favouring the evolution of increased brain investment. Here, we present a modification of social brain models, which we term the distributed cognition hypothesis. Distributed cognition models assume group members can rely on social communication instead of individual cognition; these models predict reduced brain investment in social species. To test this hypothesis, we compared brain investment among 29 species of wasps (Vespidae family), including solitary species and social species with a wide range of social attributes (i.e. differences in colony size, mode of colony founding and degree of queen/worker caste differentiation). We compared species means of relative size of mushroom body (MB) calyces and the antennal to optic lobe ratio, as measures of brain investment in central processing and peripheral sensory processing, respectively. In support of distributed cognition predictions, and in contrast to patterns seen among vertebrates, MB investment decreased from solitary to social species. Among social species, differences in colony founding, colony size and caste differentiation were not associated with brain investment differences. Peripheral lobe investment did not covary with social structure. These patterns suggest the strongest changes in brain investment—a reduction in central processing brain regions—accompanied the evolutionary origins of eusociality in Vespidae.  相似文献   

4.
Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.  相似文献   

5.
Primitively eusocial paper wasps exhibit considerable plasticity in their division of labor. Dominance interactions among nest mates play a strong role in determining the task performance patterns of adult females. We asked whether dominance status and task performance differences were associated with the development of subregions of the mushroom bodies (MB) of female Mischocyttarus mastigophorus queens and workers. We found that the MB calycal neuropils were better developed (relative to the Kenyon cell body layer) in the dominant females that spent more time on the nest. Increased MB calyx development was more strongly associated with social dominance than with high rates of foraging. The MB of queens resembled those of dominant workers. The results suggest that social interactions are particularly relevant to M. mastigophorus females' cognition. By examining the MB of newly emerged females, we also found evidence for significant age-related changes in MB structure.  相似文献   

6.
Morphological differences between queens and workers in an Australian swarm-founding paper wasp, Ropalidia romandi , were examined, providing detailed information on the nature of morphological caste differences in swarm-founding Ropalidia for the first time. Queens and workers differed in overall size and had divergent shapes, but differences were not always significant. In colonies in which queen–worker dimorphism was distinct, while the head width of queens was nearly the same as that of workers, queens were significantly larger in measures on the metasoma than workers. Plotting of metasomal variables against the mesosomal length and analysis of covariance showed that queen–worker morphological differentiation in R. romandi cannot be explained by simple linear allometric growth, suggesting that the two castes diverge in their growth parameters in the preadult stage. The pattern of morphological caste difference varied among colonies or was colony specific; there was no clear correlation between caste differences and colony cycle progression. These results suggest that morphological caste differences in R. romandi are determined genetically or by interactions between genetic background and intrinsic factors and/or external conditions.  相似文献   

7.
Caste totipotency and conflict in a large-colony social insect   总被引:2,自引:0,他引:2  
In most social insects with large, complex colonies workers and queens are morphologically quite distinct. This means that caste determination must occur prior to adulthood. However workers and queens in the swarm-founding epiponine wasps are often morphologically indistinguishable, or nearly so, suggesting that caste determination in these wasps could be quite different. To determine the extent of caste lability in the epiponine, Parachartergus colobopterus, we removed all the queens from one colony and all but one from another colony. Worker aggression diminished after queen removal. A week later the colony with no queens had a new, young cohort of mated queens. These must have been either adults or pupae at the time of queen removal, and so could not have been fed any differently from workers. Relatedness patterns confirmed that these new queens would normally have been workers and not queens. A model of inclusive fitness interests shows that workers ought to suppress new queen production, except at low queen numbers, a prediction supported by our empirical results. The patterns of social conflict over queenship resulting from swarm founding in a many-queen society may help to explain the unusually weak caste differentiation in the epiponines.  相似文献   

8.
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.  相似文献   

9.
Caste differentiation and reproductive division of labor are the hallmarks of insect societies. In ants and other social Hymenoptera, development of female larvae into queens or workers generally results from environmentally induced differences in gene expression. However, several cases in which certain gene combinations may determine reproductive status have been described in bees and ants. We investigated experimentally whether genotype directly influences caste determination in two populations of Pogonomyrmex harvester ants in which genotype-caste associations have been observed. Each population contains two genetic lineages. Queens are polyandrous and mate with males of both lineages , but in mature colonies, over 95% of daughter queens have a pure-lineage genome, whereas all workers are of F1 interlineage ancestry. We found that this pattern is maintained throughout the colony life cycle, even when only a single caste is being produced. Through controlled crosses, we demonstrate that pure-lineage eggs fail to develop into workers even when interlineage brood are not present. Thus, environmental caste determination in these individuals appears to have been lost in favor of a hardwired genetic mechanism. Our results reveal that genetic control of reproductive fate can persist without loss of the eusocial caste structure.  相似文献   

10.
A. Gotoh  F. Ito 《Insectes Sociaux》2008,55(1):98-104
Investigation of reproductive strategies of ants in the subfamily Ponerinae is important for understanding of the evolution of social structure and of the significance of caste dimorphisms. The biology of species with mated and egg-laying workers (gamergates) has been studied for many species, however, little attention has been paid to species that reproduce via alate queens only. We investigated the seasonal cycle of changes in the colony structure of Pachycondyla chinensis reproduced by alate queens in western Japan, and found the following novel biological characteristics of this species. P. chinensis showed a remarkable caste dimorphism in ovariole numbers: workers had no ovaries while queens had 18 to 36 ovarioles in their ovaries. The nesting system seemed to be polydomous: 266 of 400 nests collected were queenless. The number of queenless nests increased during the reproductive season. Among the 134 queenright nests, 38 had several mated-queens without significant differences in ovary activation and the remaining 96 nests were monogynous. During winter to early spring, most nests were polygynous. After alate production, most of the old queens seemed to die or be expelled and replaced by new queens. Virgin dealated queens were often found and they seemed to have laid eggs. Received 3 August 2007; revised 19 December 2007; accepted 20 December 2007  相似文献   

11.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

12.
Evolution of Swarm Communication in Eusocial Wasps (Hymenoptera: Vespidae)   总被引:1,自引:0,他引:1  
Eusocial paper wasps, yellowjackets, and hornets (Vespidae) exhibit two modes of colony foundation, primitively eusocial independent founders and advanced eusocial swarm founders. Unlike independent founders, swarmfounding wasps require a means of social communication to coordinate the movement of colony members between nest sites. We employed a phylogeny of paper wasps, yellowjackets, and hornets to test for patterns of correlated evolution between the mode of colony foundation and the presence of sternal exocrine glands. We also reviewed data on worker actions during swarming to determine whether swarm communication behavior was dependent upon gland possession and whether communicative behavior was shared among swarm-founding species. We did not find evidence for an association of sternal glands with swarm founding. Although sternal gland presence differed among swarm-founding species, worker behavior during swarming showed little variation. Workers of nearly all swarm-founding species rub their gasters on objects along swarm routes, independently of the occurrence of sternal glands. Widespread gastral rubbing indicates the use of swarm emigration trail pheromones from a diversity of glandular sources. Transitions from independent to swarm founding have been achieved via diverse pheromonal mechanisms in the Vespidae, while worker communicative behavior is either highly conserved or convergent.  相似文献   

13.
Caste polymorphism, defined as the presence within a colony of two or more morphologically differentiated individuals of the same sex, is an important character of highly eusocial insects both in the Hymenoptera (ants, bees and wasps) and in the Isoptera (termites), the only two groups in the animal kingdom where highly eusocial species occur. Frequently, caste polymorphism extends beyond mere variations in size (although the extent of variations in size can be in the extreme) and is accompanied by allometric variations in certain body parts. How such polymorphism has evolved and why, in its extreme form, it is essentially restricted to the social insects are questions of obvious interest but without satisfactory answers at the present time. I present a hypothesis entitled ‘genetic release followed by diversifying evolution’, that provides potential answers to these questions. I argue that genetic release followed by diversifying evolution is made possible under a number of circumstances. One of them I propose is when some individuals in a species begin to rely on the indirect component of inclusive fitness while others continue to rely largely on the direct component, as workers and queens in social insects are expected to do. Thus when queens begin to rely on workers for most of the foraging, nest building and brood care, and workers begin to rely increasingly on queens to lay eggs—when queen traits and worker traits do not have to be expressed in the same individual—I postulate the relaxation of stabilizing selection and new spurts of directional selection on both queen-trait genes and worker-trait genes (in contrasting directions) leading to caste polymorphism.  相似文献   

14.
Morphometric studies performed in several species of Neotropical social wasps from the tribe Epiponini showed that in some species there are marked differences between castes, while other species present highly distinct castes with differences only in ovarian development. This work analyzed females from six colonies of the social wasp Leipomeles dorsata (Fabricius) in which queens (egglayers) and workers showed differences in ovarian development and coloration. We propose that wasps with developed ovaries (egglayers) and coloration similar to those of workers are possibly intermediates that obtained the status of queens in the colony.  相似文献   

15.
Neotropical swarm-founding wasps, the Epiponini, are an outstanding group of social insects whose societies are polygynic and complex nest builders. Caste dimorphism in these wasps ranges from incipient to highly distinct. Morphometric analyses of nine body parts, ovarian status, relative age and development of the 5th gastral sternite gland (Richards' gland) of Polybia bistriata Fabricius were undertaken in order to estimate caste differentiation in nine colonies. Morphological and physiological data were used in multivariate analyses in order to evaluate the level of discrimination between inseminated and non-inseminated females. Clear physiological differences were found: queens had highly developed ovaries and they were inseminated, and workers had totally undeveloped ovaries or they had few developed oocytes (only in two colonies), but in both cases insemination was not detected. ANOVA and discriminant function analysis detected slight, but significant differences between castes. In relation to colony cycle, colonies were considered to be in the following stages: one in pre-emergence, four in worker production and four in sexuals production. Richards' gland analyses indicated that in small colonies (<100 females) queens had a less developed gland than in medium (100-200 females), and large colonies (>200 females). Taking the whole data, it was possible to conclude that caste differences were slight, but more evident in some phases of the colony cycle, a phenomenon previously described for other epiponines.  相似文献   

16.
Queens of hymenopteran social parasites manipulate the workers of other social species into raising their offspring. However, nonconspecific brood care may also allow the parasite larvae to control their own development to a greater extent than possible in nonparasitic species. An evolutionary consequence of this may be the loss of the parasite's worker caste if the larvae can increase their fitness by developing into sexuals rather than workers. We argue that this loss is particularly likely in species in which there is little inclusive fitness benefit in working. Retention of a worker caste correlates with characteristics that increase the fitness of working relative to becoming a sexual, such as worker-production of males, high intracolony relatedness, and seasonal environments where the hosts of potential parasite queens are not always available. Further evidence strongly suggests that when the worker caste is evolutionarily lost in perennial species like ants, it disappears rapidly and through a reduction in caste threshold and queen size, so that parasite larvae become queens with less food than required to produce host workers. This evolutionary process, however, appears to lower overall population fitness, resulting in workerless parasite species having small populations and being geographically restricted. Conversely, in annual species like bees and wasps, workerless social parasitism evolves with no size reduction in queens, which is consistent with an expected lower level of queen/offspring conflict.  相似文献   

17.

Background

The popular view on insect sociality is that of a harmonious division of labor among two morphologically distinct and functionally non-overlapping castes. But this is a highly derived state and not a prerequisite for a functional society. Rather, caste-flexibility is a central feature in many eusocial wasps, where adult females have the potential to become queens or workers, depending on the social environment. In non-swarming paper wasps (e.g., Polistes), prospective queens fight one another to assert their dominance, with losers becoming workers if they remain on the nest. This aggression is fueled by juvenile hormone (JH) and ecdysteroids, major factors involved in caste differentiation in most eusocial insects. We tested whether these hormones have conserved aggression-promoting functions in Synoeca surinama, a caste-flexible swarm-founding wasp (Epiponini) where reproductive competition is high and aggressive displays are common.

Results

We observed the behavioral interactions of S. surinama females in field nests before and after we had removed the egg-laying queen(s). We measured the ovarian reproductive status, hemolymph JH and ecdysteroid titers, ovarian ecdysteroid content, and analyzed the cuticular hydrocarbon (CHC) composition of females engaged in competitive interactions in both queenright and queenless contexts. These data, in combination with hormone manipulation experiments, revealed that neither JH nor ecdysteroids are necessary for the expression of dominance behaviors in S. surinama. Instead, we show that JH likely functions as a gonadotropin and directly modifies the cuticular hydrocarbon blend of young workers to match that of a reproductive. Hemolymph ecdysteroids, in contrast, are not different between queens and workers despite great differences in ovarian ecdysteroid content.

Conclusions

The endocrine profile of S. surinama shows surprising differences from those of other caste-flexible wasps, although a rise in JH titers in replacement queens is a common theme. Extensive remodeling of hormone functions is also evident in the highly eusocial bees, which has been attributed to the evolution of morphologically defined castes. Our results show that hormones which regulate caste-plasticity can lose these roles even while caste-plasticity is preserved.
  相似文献   

18.
Summary: This work investigated Augochloropsis iris, its annual colony cycle, brood size and survival rate, caste differentiation, and sex ratio, and is the first detailed account of a clearly eusocial species of this genus. The population studied is located in the Campos do Jordão State Park, São Paulo, Brazil. The annual colony cycle extends from August to March and consists of three phases of cell provisioning separated by two phases of inactivity, and followed by an emergence of future queens and males. Provisioning during the first phase is carried primarily out by solitary females. The daughters, after emerging from the cells, remain in the natal nests, carrying out foraging activities, while the mother engages in reproduction. New nests are initiated during each of the provisioning phases by solitary females, principally by females from the second-phase brood which, soon after emerging from the cells, leave their natal nests to found their own nests, which they provision during the third phase. The females resulting from the third-phase brood in general mate and excavate their own nests, in which they diapause, with provisioning delayed until the following August. On average, the queens are significantly larger (5%) than the workers. In general, the workers do not have developed ovaries, but all are mated. Kin selection can be accepted as the selective force responsible for worker behavior of A. iris in eusocial colonies when the queen has mated once and semisocial colonies if the queen mated only once. The percentage of males produced in the first, second and third broods and in the brood of new nests founded by solitary females active in the second and third phases was: 20.7%, 22.2%, 13.3% and 0.0% respectively. The resultant sex ratio of the third brood suggests that the third-phase workers of eusocial nests are at least in partial control of their colony's sex ratios, in cases where the queens mated only once.  相似文献   

19.
To examine morphological differences among queens, workers and males, 14 external body characters were measured in two colonies of the Taiwanese stingless bee Trigona ventralis hoozana. Queens were largest in all of the body parts measured except eye width and mesoscutum length, and values for most variables in queens did not overlap with those of workers and males. In contrast, the worker : male size ratios for 11 variables were close to 1.0, showing that overall body size and shape of workers resembled that of males rather than of queens. Males had the largest eyes and their mesoscutum length was comparable to that of queens. ancova between 14 morphometric variables and mesoscutum width chosen as standard body size showed that allometric growth in most variables was not linear. Plotting of some variables on mesoscutum width showed that queens had a proportionally wider first metasomal tergum and longer antennal scape, but a proportionally narrower head and eye than workers and males. These tests suggest that the morphological caste differences in this species belong to a category of complete dimorphism.  相似文献   

20.
Eusocial insects are characterized by division of labor among a sterile worker caste and a reproductive queen. In the honeybee both female castes are determined postembryonically by environmental factors, and queens develop substantially faster than workers. Since olfaction plays a crucial role in organizing honeybee behavior and social interactions, we compared the development of primary and secondary olfactory centers in the brain. Age-synchronized queen and worker pupae were raised in incubators at 34.5 degrees C, and their external morphology was characterized for all pupal stages. The development of olfactory synaptic neuropil was analyzed using anti-synapsin immunocytochemistry, f-actin-phalloidin labeling and confocal microscopy. In the antennal lobes of queens olfactory glomeruli formed approximately 4 days earlier than in workers. The adult number of olfactory glomeruli was in a similar range, but the total glomerular volume was slightly smaller in queens. Olfactory and visual subdivisions (lip, collar) of the mushroom-body calyx formed early, whereas the basal ring separated late. Synaptic microglomeruli in the olfactory lip were established approximately 3-4 days earlier in queens compared to workers. We propose that developmental heterochrony results in fewer synapses in olfactory centers (smaller glomeruli, fewer microglomeruli) in queens, which may result in poorer performance on olfactory learning tasks compared to workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号