首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

2.
There is a need for biological information to support current stock designations of bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. The existence of many inshore, resident “communities” raises questions as to the relationship these dolphins may hold with dolphins inhabiting neighboring inshore and coastal areas. In this study, population subdivision was examined among four resident, inshore bottlenose dolphin stocks (Sarasota Bay, FL, Tampa Bay, FL, Charlotte Harbor, FL and Matagorda Bay, TX) and one coastal stock (1–12 km offshore) in the Gulf of Mexico. Evidence of significant population structure among all areas was found on the basis of both mitochondrial DNA (mtDNA) control region sequence data and nine nuclear microsatellite loci. Estimates of relatedness showed no population contained a significantly high number of related individuals, while separate AMOVAs for males and females indicated that both sexes exhibit a significant level of site philopatry. Results presented here provide the first genetic evidence of population subdivision between the coastal Gulf of Mexico and adjacent inshore areas along the central west coast of Florida. Such strong genetic subdivision is surprising given the short geographical distance between many of these areas and the lack of obvious geographic barriers to prevent gene flow. These findings support the current, separate identification of stocks for bottlenose dolphins inhabiting the eastern coastal and inshore areas of the Gulf of Mexico.  相似文献   

3.
Despite their high abundance and wide distribution, little is known about the historical or current growth and age structure of coastal bottlenose dolphins ( Tursiops truncatus ) in the north-central Gulf of Mexico. Between 1986 and 2003, teeth were collected from bottlenose dolphins stranded on the mainland coast of Mississippi and the adjacent barrier islands. Bottlenose dolphin strandings occurred year round, peaking in March and April. Neonate strandings also peaked during these 2 mo. Age estimates were obtained from 111 animals by reading the growth layer groups in the dentine layer of the teeth. The ages ranged from <1 yr to 30 yr of age. The two-stage Laird–Gompertz growth model was fitted to the total length and age data. On the basis of this model, the asymptotic lengths were estimated at 250 cm for females and 255 cm for males. The length at birth estimates were 98–103 cm for females and 100–107 cm for males. These lengths are similar to those of bottlenose dolphin populations from other Gulf of Mexico areas and from the North Atlantic Ocean along the southeastern United States.  相似文献   

4.
The marine environment provides an opportunity to examine population structure in species with high dispersal capabilities and often no obvious barriers to genetic exchange. In coastal waters of the western North Atlantic, common bottlenose dolphins, Tursiops truncatus, are a highly mobile species with a continuous distribution from New York to Florida. We examine if the highly mobile nature coupled with no obvious geographic barriers to movement in this region result in a large panmictic population. Mitochondrial control region sequences and 18 microsatellite loci indicate dolphins are partitioning the habitat both latitudinally and longitudinally. A minimum of five genetically differentiated populations were identified among 404 samples collected in the range of New Jersey to northern Florida using both genetic marker types, some inhabiting nearshore coastal waters and others utilizing inshore estuarine waters. The genetic results reject the hypothesis of a single stock of coastal bottlenose dolphins put forth after the 1987–1988 epizootic that caused a large‐scale die‐off of dolphins and suggest instead the disease vector was transferred from one population to the next as a result of seasonal migratory movements of some populations. These coastal Atlantic populations also differ significantly from bottlenose dolphin samples collected in coastal waters of the northern Gulf of Mexico, implying a long‐term barrier to movement between the two basins.  相似文献   

5.
Despite recent progress defining the morphological and genetic characteristics of forms of the bottlenose dolphin inhabiting offshore waters, little is known of their behavior or ranging patterns. Reports suggest that an “offshore form” exists between the 200- and 2,000-m isobaths in distinct Gulf of Mexico and western North Atlantic stocks, while one or more coastal forms inhabit the waters inshore. Two opportunities to track rehabilitated adult male bottlenose dolphins with satellite-linked transmitters occurred in 1997. “Rudy” stranded in NW Florida and was released in the Gulf of Mexico off central west Florida. He moved around Florida and northward to off Cape Hatteras, NC, covering 2,050 km in 43 d. “Gulliver” stranded near St. Augustine and was released off Cape Canaveral, FL. He moved 4,200 km in 47 d to a location northeast of the Virgin Islands. Gulliver swam through 5,000-m-deep waters 300 km offshore of the northern Caribbean islands, against the North Equatorial Current. These records expand the range and habitat previously reported for the offshore stock of bottlenose dolphins inhabiting the waters off the southeastern United States, underscore the difficulties of defining pelagic stocks, illustrate the success of rehabilitation efforts, indicate the value of follow-up monitoring of rehabilitated and released cetaceans, and expand our understanding of the long-range movement capabilities of a dolphin species more commonly thought of as a resident in coastal waters.  相似文献   

6.
Most harbour porpoises found dead on the north-east coast of Scotland show signs of attack by sympatric bottlenose dolphins, but the reason(s) for these violent interactions remain(s) unclear. Post-mortem examinations of stranded bottlenose dolphins indicate that five out of eight young calves from this same area were also killed by bottlenose dolphins. These data, together with direct observations of an aggressive interaction between an adult bottlenose dolphin and a dead bottlenose dolphin calf, provide strong evidence for infanticide in this population. The similarity in the size range of harbour porpoises and dolphin calves that showed signs of attack by bottlenose dolphins suggests that previously reported interspecific interactions could be related to this infanticidal behaviour. These findings appear to provide the first evidence of infanticide in cetaceans (whales, dolphins and porpoises). We suggest that infanticide must be considered as a factor shaping sociality in this and other species of cetaceans, and may have serious consequences for the viability of small populations.  相似文献   

7.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations.  相似文献   

8.
World populations or stock distinction of Tursiops truncatus has been difficult to assess, because of large variations in morphology, habitat, feeding habits, and social structure among areas, which may reflect phylogenetic segregation or ecological plasticity. In the Gulf of California, Mexico, two common bottlenose dolphin ecotypes (inshore and offshore) have been reported. The offshore ecotype is frequently observed in association with sperm whales (Physeter macrocephalus) but the reason for this is still unknown. To explore the degree of resource partitioning/overlap between these species and stocks, we used skin stable isotope values (δ13C, δ15N) to estimate quantitative metrics of isotopic niche width (Bayesian standard ellipse areas, SEAB) and estimated their diet composition using Bayesian isotopic mixing models. The inshore ecotype in different regions (north, central, and south) of the Gulf of California exhibited distinct δ15N values and SEAB, suggesting a latitudinal gradient in nitrogen sources of coastal localities. The SEAB of inshore and offshore bottlenose dolphin ecotypes was completely distinct, indicating resource partitioning. Associated offshore ecotype and sperm whales had overlapping SEAB. The isotopic mixing model indicates that a considerable proportion of both species’ diet is large Humbolt squid. Our results suggest that resource partitioning and species association are two strategies that bottlenose dolphin ecotypes use in this zone.  相似文献   

9.
The relative abundance of the most common cetacean schools in the eastern tropical Pacific Ocean for 1977–1980 are estimated based on encounter rates with tuna purse-seiners. No temporal trends were apparent in the relative abundance estimates. The geographic distributions for eight different school types are described. Multivariate statistical techniques are used to investigate interrelations between species and relationships to parameters of the physical environment. The results suggest three major species groupings: (1) an inshore grouping of bottlenose dolphins ( Tursiops truncates ), Risso's dolphin ( Grampus griseus ), pilot whales ( Globicephala macrorhynchus ) and, to a lesser extent, common dolphins ( Delphinus delphis ); (2) an offshore pelagic grouping of spotted and spinner dolphins ( Stenella attenuate and S. longirostris ); and (3) an association between pilot whales and common dolphins that overlaps the first grouping in inshore areas and also tends to be segregated from the second grouping. The results also suggest that relative densities of different school types are strongly related to physical environmental parameters, the most important being sea surface temperature, depth of the thermocline and thickness of the oxygen minimum layer.  相似文献   

10.
We investigated patterns of abundance and distribution for coastal migratory Atlantic bottlenose dolphins (Tursiops truncatus) that appear seasonally in the nearshore waters of Virginia Beach, Virginia. The study was conducted along 24 km of shoreline at the southern point of the Chesapeake Bay mouth from April 1994 to March 1995. This is the first study to investigate the relationship between the abundance of coastal migratory dolphins and factors that might affect their movement. A profile analysis of variance revealed significant differences in local abundance and distribution throughout the year. Dolphin number was positively correlated with water temperature and not correlated with photoperiod. Although prey distribution and abundance are two factors thought to affect dolphin presence, in this study the relationship between these two factors and dolphin abundance was unclear. Greater numbers of dolphins were found in the ocean section of the study area. However, significantly higher ratios of neonatal dolphins were observed in the bay section, suggesting the bay serves as a nursery area. The observed relationship between local dolphin abundance and environmental factors in Virginia may provide insight into dolphin distribution and migration along the Atlantic coast of the United States.  相似文献   

11.
The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model‐testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic ‘offshore’ dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free‐ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well‐supported clade of Indo‐Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations.  相似文献   

12.
Determining genetic connectivity of bottlenose dolphin communities helps identify evolutionary mechanisms, such as environmental and social factors, that interact to shape dispersal in highly social marine mammals. Here, we expand on a localized study that found marked genetic differentiation among resident dolphins (Tursiops aduncus) in the Port Stephens embayment and adjacent coastal communities, to include four additional communities inhabiting different environment types along the New South Wales coast, Southeastern Australia. Analysis of the mitochondrial DNA control region and seven microsatellite loci suggest the nine communities may have originated from a single ancestral population that progressively colonised the coast in a southward direction. Gene flow among communities was predominately governed by habitat type. The two enclosed embayments showed the highest level of genetic differentiation from other communities, while genetic differentiation among coastal and open embayment communities generally followed a pattern of isolation by distance. Directional bias in recent migration rates was evident, with the centrally located Hunter coast communities consisting of individuals with mixed ancestry from the Northern, Southern and Port Stephens communities. Emigration from Port Stephens was substantially higher than in the opposite direction, indicating there may be social barriers to dispersal created by Port Stephens dolphins. Our results suggest that the scale of connectivity of bottlenose dolphin communities inhabiting heterogeneous environments is likely to be affected by local habitat adaptation. This has important implications for the management of communities exposed to increasing levels of anthropogenic disturbances, such as the intensive commercial dolphin-watching industry operating in Port Stephens.  相似文献   

13.

We report the first recorded interactions between bottlenose dolphin (Tursiops truncatus) and Commerson’s dolphins (Cephalorhynchus commersonii). The diurnal behavioral patterns of bottlenose dolphins in Bahía Engaño, Argentina, were similar to those described for other coastal populations around the world. The majority of the feeding bouts were recorded near the mouth the Chubut River. When not feeding near the river, bottlenose dolphins generally swam along the coast, and interactions with Commerson’s dolphins were recorded very close to the shore on two occasions during a 3-year period. In the first event, both species were feeding on a fish school. The second interaction was aggressive in nature, involving one juvenile and three adult bottlenose dolphins with several Commerson’s dolphins. Two of the adult bottlenose dolphins attacked the Commerson’s dolphins. We propose that the observed behavior represented defense of the juvenile bottlenose dolphin.

  相似文献   

14.
An unusual number of near term and neonatal bottlenose dolphin (Tursiops truncatus) mortalities occurred in the northern Gulf of Mexico (nGOM) in 2011, during the first calving season after two well documented environmental perturbations; sustained cold weather in 2010 and the Deepwater Horizon oil spill (DWHOS). Preceding the stranding event, large volumes of cold freshwater entered the nGOM due to unusually large snowmelt on the adjacent watershed, providing a third potential stressor. We consider the possibility that this extreme cold and freshwater event contributed to the pattern of perinatal dolphin strandings along the nGOM coast. During the 4-month period starting January 2011, 186 bottlenose dolphins, including 46% perinatal calves (nearly double the percentage for the same time period from 2003-2010) washed ashore from Louisiana to western Florida. Comparison of the frequency distribution of strandings to flow rates and water temperature at a monitoring buoy outside Mobile Bay, Alabama (the 4(th) largest freshwater drainage in the U.S.) and along the nGOM coast showed that dolphin strandings peaked in Julian weeks 5, 8, and 12 (February and March), following water temperature minima by 2-3 weeks. If dolphin condition was already poor due to depleted food resources, bacterial infection, or other factors, it is plausible that the spring freshet contributed to the timing and location of the unique stranding event in early 2011. These data provide strong observational evidence to assess links between the timing of the DWHOS, other local environmental stressors, and mortality of a top local predator. Targeted analyses of tissues from stranded dolphins will be essential to define a cause of death, and our findings highlight the importance of considering environmental data along with biological samples to interpret stranding patterns during and after an unusual mortality event.  相似文献   

15.
Abstract: Restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) were used to test for population subdivision in the bottlenose dolphin (Tursiops truncatus). Atlantic and Pacific dolphin mtDNA samples exhibited distinctly different haplotypes (approximately 2.4% sequence divergence), indicating a lack of gene exchange. Within the Atlantic Ocean, mtDNA samples from the Gulf of Mexico and the Atlantic Coast were also found to be distinct, with a sequence divergence of approximately 0.6%. The Atlantic Coast–Gulf of Mexico dichotomy is consistent with patterns of genetic variation from other marine and coastal organisms from this region, and supports the hypothesized role of bio-geographic events in promoting the divergence of these and other forms. Regional differentiation was identified along the Atlantic Coast, whereas low sequence divergences among haplotypes and consistent haplotype frequencies across populations suggested considerable gene exchange among Gulf of Mexico populations. A highly divergent haplotype found in two individuals from two localities in the Gulf of Mexico is best explained by dispersal from either a distinct offshore Gulf stock or an unsampled Atlantic Coast stock. Additional samples are required to test for the existence of a distinct offshore race and, if it exists, to identify its distribution and contribution to population structure.  相似文献   

16.
Harmful algal blooms (HABs), which can be lethal in marine species and cause illness in humans, are increasing worldwide. In the Gulf of Mexico, HABs of Karenia brevis produce neurotoxic brevetoxins that cause large‐scale marine mortality events. The long history of such blooms, combined with the potentially severe effects of exposure, may have produced a strong selective pressure for evolved resistance. Advances in next‐generation sequencing, in particular genotyping‐by‐sequencing, greatly enable the genomic study of such adaptation in natural populations. We used restriction site‐associated DNA (RAD) sequencing to investigate brevetoxicosis resistance in common bottlenose dolphins (Tursiops truncatus). To improve our understanding of the epidemiology and aetiology of brevetoxicosis and the potential for evolved resistance in an upper trophic level predator, we sequenced pools of genomic DNA from dolphins sampled from both coastal and estuarine populations in Florida and during multiple HAB‐associated mortality events. We sequenced 129 594 RAD loci and analysed 7431 single nucleotide polymorphisms (SNPs). The allele frequencies of many of these polymorphic loci differed significantly between live and dead dolphins. Some loci associated with survival showed patterns suggesting a common genetic‐based mechanism of resistance to brevetoxins in bottlenose dolphins along the Gulf coast of Florida, but others suggested regionally specific mechanisms of resistance or reflected differences among HABs. We identified candidate genes that may be the evolutionary target for brevetoxin resistance by searching the dolphin genome for genes adjacent to survival‐associated SNPs.  相似文献   

17.
Gompertz growth models were fitted to total lengths and ages from tooth sections of 199 stranded bottlenose dolphins ( Tursiops truncatus ) from the Indian River Lagoon system, eastern Florida. Based on the model, dolphins from this population are estimated to be born at 119 cm and reach asymptotic length at 250 cm. No apparent pubescent growth acceleration was noted for either sex. Males appeared to grow to slightly longer lengths than females. There were small size differences between Indian River dolphins and those in Texas and Sarasota, indicating general size similarities between North Atlantic and Gulf of Mexico bottlenose dolphins stocks.  相似文献   

18.
The prevalence of antibodies to morbilliviruses, Brucella and Toxoplasma was studied in the Black Sea bottlenose dolphin Tursiops truncatus ponticus and the beluga whale Delphinapterus leucas from the Sea of Okhotsk. The blood serum of 74 dolphins and 147 beluga whales was tested in 2002–2007. Antibodies to morbilliviruses were detected in 15 (20.3%) bottlenose dolphins and 20 (13.6%) beluga whales. Antibodies to Brucella were detected in 17 (23.0%) bottlenose dolphins and 10 (6.8%) beluga whales. Toxoplasma-specific antibodies were detected in 39 (52.7%) bottlenose dolphins and 7 (4.8%) beluga whales. Some animals had antibodies to two, or even three, of the pathogens. A high level of incidence of the pathogens in the sea animals was found in the densely populated coastal areas with high economic development.  相似文献   

19.
Boat-based photoidentification surveys of bottlenose dolphins (Tursiops truncatus) were conducted from 1982 to 1989 in three discrete coastal study areas within the Southern California Bight: (1) Santa Barbara, California; (2) Orange County, California; (3) Ensenada, Baja California, Mexico. A total of 207 recognizable dolphins were identified in these three “secondary” study areas. These individuals were compared to 404 dolphins identified from 1981 to 1989 in our “primary” study area, San Diego, California, to examine the coastal movement patterns of bottlenose dolphins within the Southern California Bight. A high proportion of dolphins photographed in Santa Barbara (88%), Orange County (92%), and Ensenada (88%) were also photographed in San Diego. Fifty-eight percent (n= 120) of these 207 dolphins exhibited back-and-forth movements between study areas, with no evidence of site fidelity to any particular region. Minimum range estimates were 50 and 470 km. Minimum travel-speed estimates were 11-47 km/d, and all dolphin schools sighted during the study were within 1 km of the shore. These data suggest that bottlenose dolphins within the Southern California Bight are highly mobile within a relatively narrow coastal zone. Home-range dimensions and movement patterns for many vettebrate species are influenced, in part, by variation in food resources. The unique range characteristics documented during this study may reflect the highly dynamic nature of this coastal ecosystem and the associated patchy distribution of food resources available to these bottlenose dolphins.  相似文献   

20.
Acoustic methods may improve the ability to identify cetacean species during shipboard surveys. Whistles were recorded from nine odontocete species in the eastern tropical Pacific to determine how reliably these vocalizations can be classified to species based on simple spectrographic measurements. Twelve variables were measured from each whistle ( n = 908). Parametric multivariate discriminant function analysis (DFA) correctly classified 41.1% of whistles to species. Non-parametric classification and regression tree (CART) analysis resulted in 51.4% correct classification. Striped dolphin whistles were most difficult to classify. Whistles of bottlenose dolphins, false killer whales, and pilot whales were most distinctive. Correct classification scores may be improved by adding prior probabilities that reflect species distribution to classification models, by measuring alternative whistle variables, using alternative classification techniques, and by localizing vocalizing dolphins when collecting data for classification models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号