首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

2.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. LPL promotes this selective lipid uptake independent of lipolysis. In this study, the role of SR-BI in the mechanism of this LPL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA, and significant SR-BI expression could be detected in immunoblots, whereas no SR-BI was visualized in control cells. Y1-BS1 murine adrenocortical cells were cultured without or with adrenocorticotropic hormone, and cells with no detectable or with SR-BI were obtained. These cells incubated without or with LPL in medium containing 125I/[3H]cholesteryl oleyl ether- labeled HDL3; tetrahydrolipstatin inhibited the catalytic activity of LPL. In BHK and in Y1-BS1 cells without or with SR-BI expression, apparent HDL3 selective CE uptake ([3H]CEt - 125I) was detectable. Cellular SR-BI expression promoted HDL3 selective CE uptake by approximately 250-1,900%. In BHK or Y1-BS1 cells, LPL mediated an increase in apparent selective CE uptake. Quantitatively, this stimulating LPL effect was very similar in control cells and in cells with SR-BI expression. The uptake of radiolabeled HDL3 was also investigated in human embryonal kidney 293 (HEK 293) cells that are an established SR-BI-deficient cell model. LPL stimulated [3H]cholesteryl oleyl ether uptake from labeled HDL3 by HEK 293 cells substantially, showing that LPL can induce selective CE uptake from HDL3 independent of SR-BI. To explore the role of cell surface proteoglycans on lipoprotein uptake, we induced proteoglycan deficiency by heparinase treatment. Proteoglycan deficiency decreased the LPL-mediated promotion of HDL3 selective CE uptake. In summary, evidence is presented that the stimulating effect of LPL on HDL3 selective CE uptake is independent of SR-BI and lipolysis. However, cell surface proteoglycans are required for the LPL action on selective CE uptake. It is suggested that pathways distinct from SR-BI mediate selective CE uptake from HDL.  相似文献   

3.
The physiological role of murine scavenger receptor class B type I (SR-BI) was evaluated by in vivo clearances of human HDL3 and LDL in normal and SR-BI knockout (KO) mice. In normal mice, cholesteryl esters (CEs) were removed faster than proteins, indicating a selective uptake process from both HDL3 and LDL. SR-BI KO mice showed 80% losses of HDL-CE selective uptake and the complete loss of LDL-CE selective uptake in the first phase of clearance. However, the second phase was characterized by an acceleration of CE disappearance in SR-BI KO mice. Thus, SR-BI is the only murine receptor mediating HDL-CE selective uptake, whereas a SR-BI-independent pathway specific to LDL can rescue SR-BI deficiency. The analysis of LDL recovered 3 h after injection in mice from different genotypes revealed that LDLs are significantly depleted in CE (reduction from 19% to 50% of the CE/protein ratios). A smaller LDL size in comparison with that of noninjected LDL was also detectable but was more evident for LDL recovered from normal mice. All LDL preparations migrate faster than noninjected LDL on agarose-barbital gels. Thus, both SR-BI-dependent and -independent pathways lead to substantial changes in LDL.  相似文献   

4.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

5.
Low-density lipoprotein (LDL)-cholesteryl ester (CE) selective uptake has been demonstrated in nonhepatic cells overexpressing the scavenger receptor class B type I (SR-BI). The role of hepatic SR-BI toward LDL, the main carrier of plasma CE in humans, remains unclear. The aim of this study was to determine if SR-BI, expressed at its normal level, is implicated in LDL-CE selective uptake in human HepG2 hepatoma cells and mouse hepatic cells, to quantify its contribution and to determine if LDL-CE selective uptake is likely to occur in the presence of human HDL. First, antibody blocking experiments were conducted on normal HepG2 cells. SR-BI/BII antiserum inhibited (125)I-LDL and (125)I-HDL(3) binding (10 microg of protein/mL) by 45% (p < 0.05) and CE selective uptake by more than 85% (p < 0.01) for both ligands. Second, HepG2 cells were stably transfected with a eukaryotic vector expressing a 400-bp human SR-BI antisense cDNA fragment. Clone 17 (C17) has a 70% (p < 0.01) reduction in SR-BI expression. In this clone, (3)H-CE-LDL and (3)H-CE-HDL(3) association (10 microg of protein/mL) was 54 +/- 6% and 45 +/- 7% of control values, respectively, while (125)I-LDL and (125)I-HDL(3) protein association was 71 +/- 3% and 58 +/- 5% of controls, resulting in 46% and 55% (p < 0.01) decreases in LDL- and HDL(3)-CE selective uptake. Normalizing CE selective uptake for SR-BI expression reveals that SR-BI is responsible for 68% and 74% of LDL- and HDL(3)-CE selective uptake, respectively. Thus, both approaches show that, in HepG2 cells, SR-BI is responsible for 68-85% of CE selective uptake. Other pathways for selective uptake in HepG2 cells do not require CD36, as shown by anti-CD36 antibody blocking experiments, or class A scavenger receptors, as shown by the lack of competition by poly(inosinic acid). However, CD36 is a functional oxidized LDL receptor on HepG2 cells, as shown by antibody blocking experiments. Similar results for CE selective uptake were obtained with primary cultures of hepatic cells from normal (+/+), heterozygous (-/+), and homozygous (-/-) SR-BI knockout mice. Flow cytometry experiments show that SR-BI accounts for 75% of DiI-LDL uptake, the LDL receptor for 14%, and other pathways for 11%. CE selective uptake from LDL and HDL(3) is likely to occur in the liver, since unlabeled HDL (total and apoE-free HDL(3)) and LDL, when added in physiological proportions, only partially competed for LDL- and HDL(3)-CE selective uptake. In this setting, human hepatic SR-BI may be a crucial molecule in the turnover of both LDL- and HDL(3)-cholesterol.  相似文献   

6.
The selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE) by the scavenger receptor class B type I (SR-BI) is well documented. However, the effect of altered HDL composition, such as occurs in hyperlipidemia, on this important process is not known. This study investigated the impact of variable CE and triglyceride (TG) content on selective uptake. CE selective uptake by Y1 and HepG2 cells was strongly affected by modification of either the CE or TG content of HDL. Importantly, TG, like CE, was selectively taken up by a dose-dependent, saturable process in these cells. As shown by ACTH up-regulation and receptor overexpression experiments, SR-BI mediated the selective uptake of both CE and TG. With in vitro modified HDLs of varying CE and TG composition, the selective uptake of CE and TG was dependent on the abundance of each lipid within the HDL particle. Furthermore, total selective uptake (CE + TG) remained constant, indicating that these lipids competed for cellular uptake. These data support a novel mechanism whereby SR-BI binds HDL and mediates the incorporation of a nonspecific portion of the HDL lipid core. In this way, TG directly affects the ability of HDL to donate CE to cells. Processes that raise the TG/CE ratio of HDL will impair the delivery of CE to cells via this receptor and may compromise the efficiency of sterol balancing pathways such as reverse cholesterol transport.  相似文献   

7.
Although sphingomyelin (SM) is a major phospholipid in lipoproteins as well as in the membrane rafts where the scavenger receptor class B type I (SR-BI) is localized, its possible role in the selective uptake of cholesteryl ester (CE) by the SR-BI-mediated pathway is unknown. We investigated the effect of SM in lipoproteins and cell membranes on the selective uptake in three different cell lines: SR-BI-transfected CHO cells, hepatocytes (HepG2), and adrenocortical cells (Y1BS1). Incorporation of SM into recombinant high density lipoprotein (rHDL) containing labeled CE resulted in up to 50% inhibition of the selective uptake of CE in all three cell lines. This inhibition was completely reversed by treatment of rHDL with sphingomyelinase (SMase). Selective uptake from plasma HDL was activated by 22-72% after treatment of HDL with SMase. In addition, pretreatment of the cells with SMase resulted in stimulation of CE uptake from rHDL by CHO and Y1BS1, although not by HepG2. Incorporation of ceramide into rHDL resulted in up to 2-fold stimulation of CE uptake, although pretreatment of cells with egg ceramide had no significant effect. These results show that SM and ceramide in the lipoproteins and the cell membranes regulate the SR-BI-mediated selective uptake of CE, possibly by interacting with the sterol ring or with SR-BI itself.  相似文献   

8.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

9.
The scavenger receptor class B, type I (SR-BI) mediates the cellular selective uptake of cholesteryl esters and other lipids from high-density lipoproteins (HDL) and low-density lipoproteins (LDL). This process, unlike classical receptor-mediated endocytosis, does not result in lipoprotein degradation. Instead, the lipid depleted particles are released into the medium. Here we show that selective lipid uptake mediated by murine SR-BI can be uncoupled from the endocytosis of HDL or LDL particles. We found that blocking selective lipid uptake by incubating cells with the small chemical inhibitors BLT-1 or BLT-4 did not affect endocytosis of HDL. Similarly, blocking endocytosis by hyperosmotic sucrose or K+ depletion did not prevent selective lipid uptake from HDL or LDL. These findings suggest that mSR-BI-mediated selective uptake occurs at the cell surface upon the association of lipoproteins with mSR-BI and does not require endocytosis of HDL or LDL particles.  相似文献   

10.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.  相似文献   

11.
Receptors of the scavenger class B family were reported to be localized in caveolae, the cell surface microdomains rich in free cholesterol and glycosphyngolipids, which are characterized by the presence of caveolin-1. Parenchymal hepatic and hepatoma HepG2 cells express very low levels of caveolin-1. In the present study, stable transformants of HepG2 cells expressing caveolin-1 were generated to address the effect of caveolin-1 on receptor activity. Compared to normal cells, these cells show higher (125)I-bovine serum albumin (BSA) uptake and cholesterol efflux, two indicators of functional caveolae. By immunoprecipitation, cell fractionation and confocal analyses, we found that caveolin-1 is well colocalized with the cluster of differentiation-36 (CD36) and the low-density lipoprotein (LDL) receptor (LDLr) but to a lesser extent with the scavenger receptor class B type I (SR-BI) in HepG2 cells expressing caveolin-1. However, caveolin-1 expression favors the dimerization of SR-BI. Two clones of cells expressing caveolin-1 were investigated for their lipoprotein metabolism activity. Compared to normal cells, these cells show a 71-144% increase in (125)I-LDL degradation. The analysis of the cholesteryl esters (CE)-selective uptake (CE association minus protein association) revealed that the expression of caveolin-1 in HepG2 cells decreases by 59%-73% LDL-CE selective uptake and increases high-density lipoprotein (HDL)-CE selective uptake by 44%-66%. We conclude that the expression of caveolin-1 in HepG2 cells moves the balance of LDL degradation/CE selective uptake towards degradation and favors HDL-CE selective uptake. Thus, in the normal hepatic parenchymal situation where caveolin-1 is poorly expressed, LDL-CE selective uptake is the preferred pathway.  相似文献   

12.
The Class B type I scavenger receptor I (SR-BI) is a physiologically relevant high density lipoprotein (HDL) receptor that can mediate selective cholesteryl ester (CE) uptake by cells. Direct interaction of apolipoprotein E (apoE) with this receptor has never been demonstrated, and its implication in CE uptake is still controversial. By using a human adrenal cell line (NCI-H295R), we have addressed the role of apoE in binding to SR-BI and in selective CE uptake from lipoproteins to cells. This cell line does not secrete apoE and SR-BI is its major HDL-binding protein. We can now provide evidence that 1) free apoE is a ligand for SR-BI, 2) apoE associated to lipids or in lipoproteins does not modulate binding or CE-selective uptake by the SR-BI pathway, and 3) the direct interaction of free apoE to SR-BI leads to an increase in CE uptake from lipoproteins of both low and high densities. We propose that this direct interaction could modify SR-BI structure in cell membranes and potentiate CE uptake.  相似文献   

13.
During the present study the contribution of lipoprotein lipase (LPL) to low density lipoprotein (LDL) holoparticle and LDL-lipid (alpha-tocopherol (alphaTocH)) turnover in primary porcine brain capillary endothelial cells (BCECs) was investigated. The addition of increasing LPL concentrations to BCECs resulted in up to 11-fold higher LDL holoparticle cell association. LPL contributed to LDL holoparticle turnover, an effect that was substantially increased in response to LDL-receptor up-regulation. The addition of LPL increased selective uptake of LDL-associated alphaTocH in BCECs up to 5-fold. LPL-dependent selective alphaTocH uptake was unaffected by the lipase inhibitor tetrahydrolipstatin but was substantially inhibited in cells where proteoglycan sulfation was inhibited by treatment with NaClO(3). Thus, selective uptake of LDL-associated alphaTocH requires interaction of LPL with heparan-sulfate proteoglycans. Although high level adenoviral overexpression of scavenger receptor BI (SR-BI) in BCECs resulted in a 2-fold increase of selective LDL-alphaTocH uptake, SR-BI did not act in a cooperative manner with LPL. Although the addition of LPL to BCEC Transwell cultures significantly increased LDL holoparticle cell association and selective uptake of LDL-associated alphaTocH, holoparticle transcytosis across this porcine blood-brain barrier (BBB) model was unaffected by the presence of LPL. An important observation during transcytosis experiments was a substantial alphaTocH depletion of LDL particles that were resecreted into the basolateral compartment. The relevance of LPL-dependent alphaTocH uptake across the BBB was confirmed in LPL-deficient mice. The absence of LPL resulted in significantly lower cerebral alphaTocH concentrations than observed in control animals.  相似文献   

14.
15.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. Hepatic lipase (HL) promotes this lipid uptake independent from lipolysis. The role of SR-BI in this HL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA yielding cells with SR-BI expression, whereas no SR-BI was detected in control cells. These cells were incubated in medium containing 125I [3H]cholesteryl oleyl ether-labeled HDL3 (d = 1.125-1.21 g/ml) and HL was absent or present. Tetrahydrolipstatin (THL) blocked lipolysis. In control BHK cells and in BHK cells with SR-BI, HDL3 selective CE uptake (3H-125I) was detectable and SR-BI promoted this uptake. In both cell types, HL mediated an increase in selective CE uptake from HDL3. Quantitatively, this HL effect was similar in control BHK cells and in BHK cells with SR-BI. These results suggest that HL promotes selective uptake independent from SR-BI. To investigate the role of cell surface proteoglycans on the HL-mediated HDL3 uptake, proteoglycan deficiency was induced by heparinase digestion. Proteoglycan deficiency decreased the HL-mediated promotion of selective CE uptake. In summary, the stimulating HL effect on HDL selective CE uptake is independent from SR-BI and lipolysis. Proteoglycans are a requisite for the HL action on selective uptake. Results suggest that (a) pathway(s) distinct from SR-BI mediate(s) selective CE uptake from HDL.  相似文献   

16.
Scavenger receptor BI (SR-BI) is a multi-ligand lipoprotein receptor that mediates selective lipid uptake from HDL, and plays a central role in hepatic HDL metabolism. In this report, we investigated the extent to which SR-BI selective lipid uptake contributes to LDL metabolism. As has been reported for human LDL, mouse SR-BI expressed in transfected cells mediated selective lipid uptake from mouse LDL. However, LDL-cholesteryl oleoyl ester (CE) transfer relative to LDL-CE bound to the cell surface (fractional transfer) was approximately 18-fold lower compared with HDL-CE. Adenoviral vector-mediated SR-BI overexpression in livers of human apoB transgenic mice ( approximately 10-fold increased expression) reduced plasma HDL-cholesterol (HDL-C) and apolipoprotein (apo)A-I concentrations to nearly undetectable levels 3 days after adenovirus infusion. Increased hepatic SR-BI expression resulted in only a modest depletion in LDL-C that was restricted to large LDL particles, and no change in steady-state concentrations of human apoB. Kinetic studies showed a 19% increase in the clearance rate of LDL-CE in mice with increased SR-BI expression, but no change in LDL apolipoprotein clearance. Quantification of hepatic uptake of LDL-CE and LDL-apolipoprotein showed selective uptake of LDL-CE in livers of human apo B transgenic mice. However, such uptake was not significantly increased in mice over-expressing SR-BI. We conclude that SR-BI-mediated selective uptake from LDL plays a minor role in LDL metabolism in vivo.  相似文献   

17.
Previous reports attributed cholesteryl ester transfer protein (CETP)-mediated HDL cholesteryl ester (CE) selective uptake to the CETP-mediated transfer of CE from HDL to newly secreted apolipoprotein B-containing lipoproteins, which are then internalized by the LDL receptor (LDL-R). CETP has also been implicated in the remodeling of HDL, which renders it a better substrate for selective uptake by scavenger receptor class B type I (SR-BI). However, CETP-mediated selective uptake of HDL3-derived CE was not diminished in LDL-R null adipocytes, SR-BI null adipocytes, or in the presence of the receptor-associated protein. We found that monensin treatment or energy depletion of the SW872 liposarcoma cells with 2-deoxyglucose and NaN3 had no effect on CETP-mediated selective uptake, demonstrating that endocytosis is not required. This is supported by data indicating that CETP transfers CE into a compartment from which it can be extracted by unlabeled HDL. CETP could also mediate the selective uptake of HDL3-derived triacylglycerol (TG) and phospholipid (PL). The CETP-specific kinetics for TG and CE uptake were similar, and both reached saturation at approximately 5 microg/ml HDL. In contrast, CETP-specific PL uptake did not attain saturation at 5 microg/ml HDL and was approximately 6-fold greater than the uptake of CE. We propose two possible mechanisms to account for the role of CETP in selective uptake.  相似文献   

18.
19.
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ~400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.  相似文献   

20.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号