首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

2.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

3.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

4.
To identify factors affecting cationic liposome-mediated gene delivery efficiency, we studied the relationship between the biophysical characteristics of liposome/DNA complexes (lipoplexes) at different (+/-) charge ratios, their structures as monitored by atomic force microscopy (AFM), and their mechanism(s) of internalization into the cells. Significant changes were observed in the particle size and zeta potential of liposomes and their structures assessed by AFM upon addition of DNA, which depended on (+/-) charge ratios. AFM images showed that lipoplexes were formed from extensively fused and apparently homogeneous lipid particles encapsulating DNA. Lipoplexes were found to internalize the cells through the endocytosis pathway. Lipoplex-cell fusion was found to occur mainly at the plasma membrane level; however, this lipoplex-cell membrane fusion was found to be essential for the uptake of the large particles. A new perspective for the internalization of large lipoplex particles into cytoplasm is discussed.  相似文献   

5.
Several studies have demonstrated that lipoplexes are two-phase systems over most mixing lipid/DNA charge ratios. Because these studies have focused on small unilamellar vesicles (SUV), they leave open the question as to whether a similar pattern is followed by other liposome types. The main purpose of this work is to examine the question further by characterizing the assembly of cationic lipoplexes prepared from 1-[2-(oleoyloxy)ethyl]-2-oleyl-3-(2-hydroxyethyl)imidazolinium chloride (DOTIM)/dioleoylphosphatidylethanolamine (DOPE) (1:1) liposomes of various types. Sedimentation in sucrose density gradients reveals that large unilamellar vesicles (LUV) and sedimented multilamellar vesicles (sMLV), as opposed to SUV, form lipoplexes that exist as a single phase over a relatively broad range of mixing (+/-) ratios. This is indicated by observing that most of the LUV and sMLV become involved in the assembly reaction up to mixing (+/-) ratios of 4 and 9, respectively, while only a small and constant fraction of SUV associates with DNA at all mixing (+/-) ratios tested. Consequently, while maximal (+/-) ratios of approximately 4.5 and 9 are found in LUV and sMLV lipoplexes, respectively, a final (+/-) ratio of only approximately 2 is determined in SUV lipoplexes. Isothermal titration calorimetry shows that this is the lowest possible charge ratio achieved when liposomes are titrated with DNA. Based on these observations and on the size differences of the liposomes used, a model of lipoplex formation is proposed.  相似文献   

6.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

7.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA-) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

8.
It has been previously shown that transfection activity of cationic liposome/DNA lipoplexes delivered systemically is drastically inhibited by lipoproteins (Tandia, B. M., Vandenbranden, M., Wattiez, R., Lakhdar, Z., Ruysschaert, J. M., and Elouahabi, A. (2003) Mol Ther. 8, 264-273). In this work, we have compared the binding/uptake and transfection activities of DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride) and diC14-amidine (3-tetradecylamino-N-tert-butyl-N'-tetra-decylpropionamidine)-containing lipoplexes in the presence or absence of purified low density lipoproteins and high density lipoprotein. Binding/uptake of both lipoplexes by the mouse lung endothelial cell line was inhibited to a similar extent in the presence of lipoproteins. In contrast, transfection activity of diC14-amidine-containing lipoplexes was almost completely inhibited (approximately by 95%), whereas approximately 40% transfection activity of DOTAP-containing lipoplexes was preserved in the presence of lipoproteins. Interestingly, the ability of lipoproteins to inhibit the transfection efficiency of lipoplexes was well correlated with their ability to undergo lipid mixing with the cationic lipid bilayer as revealed by fluorescence resonance energy transfer assay. Incubation of lipoplexes with increased doses of lipoproteins resulted in enhanced lipid mixing and reduced transfection activity of the lipoplexes in mouse lung endothelial cells. The role of lipid mixing in transfection was further demonstrated using lipid-mixing inhibitor, lyso-phosphatidylcholine, or activator (dioleoylphosphatidylethanolamine). Incorporation of Lyso-PC into diC14-amidine-containing lipoplexes completely abolished their capacity to undergo lipid mixing with lipoproteins and allowed them to reach a high transfection efficiency in the presence of lipoproteins. On the other hand, the incorporation of dioleoylphosphatidylethanolamine into DOTAP/DNA lipoplex activated lipid mixing with the lipoproteins and was shown to be detrimental toward the transfection activity of these lipoplexes. Taken together, these results indicate that fusion of lipoplexes with lipoproteins is a limiting factor for in vivo transfection.  相似文献   

9.
Lipoplexes with different surface charge were prepared from a short oligonucleotide (20 mer, dsAT) inserted into liposomes of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE). The starting liposomes were prepared by two different procedures, i.e. progressive dsAT addition starting from plain liposomes (titration) and direct mixing of dsAT with pure liposomes (point to point preparation). Lipoplexes were characterized from a molecular point of view by Electron Spin Resonance (ESR) of a cationic spin probe and by Nuclear Magnetic Resonance. Structural and surface features were analysed by Zeta potential (zeta) measurements and Cryo-TEM micrographs. The complete set of results allowed to demonstrate that: i) the interactions between dsAT and cationic lipids were strong and occurred at the liposome surface; ii) the overall shape and physicochemical properties of liposomes did not change when short nucleic acid fragments were added before surface charge neutralization; iii) the bilayer structure of the lipids in lipoplexes was substantially preserved at all charge ratios; iv) the physical status of lipoplexes with electrical charge far from neutrality did not depend on the preparation method.  相似文献   

10.
Non-viral vectors represent an important alternative in gene delivery. Among these vectors, cationic liposomes are widely studied, because of their ability to form stable complexes with DNA fragments (lipoplexes). In the present work, we report on the characterization by electron spin resonance (ESR) spectroscopy and zeta potential measurements of cationic liposomes and of their complexes with oligonucleotides. Liposomes were made with a zwitterionic lipid, DOPE, and a cationic lipid, either DOTAP or DC-Chol. Oligonucleotides were the 20-base single strand polyA, the 20-base single strand polyT, and the corresponding double strand dsAT. The zeta potential as a function of the oligonucleotide/lipid+ ratio gave an S-shaped titration curve. Well-defined surface potential changes took place upon charge compensation between the cationic lipid heads and the phosphate groups on the oligonucleotides. The inversion point depended on the specific system under study. The bilayer properties and the changes that occurred with the incorporation of DNA fragments were also monitored by ESR spectroscopy of appropriately tailored spin probes. For all the systems investigated, the ESR spectra showed that no major alteration took place after lipoplex formation and molecular packing remained substantially unchanged. Both zeta potential and ESR measurements were in favor of an external mode of packing of the lipoplexes.  相似文献   

11.
Transfection of NIH-3T3 cells by a human growth hormone expression vector complexed with liposomes composed of N-(1-(2, 3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) with or without helper lipids was studied. The transfection efficiency was dependent on the lamellarity of the liposomes used to prepare the lipoplexes. Multilamellar vesicles (MLV) were more effective than large unilamellar vesicles (LUV) of approximately 100 nm, irrespective of lipid composition. The optimal DNA/DOTAP mole ratio for transfection was 相似文献   

12.
Complexes between short oligodeoxynucleotides (ODN) with a variable dG(x)dC(y) base composition and liposomes composed of the cationic lipid DOTAP (ODN lipoplexes) were studied by differential pulse voltammetry at a glassy carbon electrode. Since lipoplexes are spontaneously formed by electrostatic interactions, the objective of the voltammetric study was to investigate their behaviour at the electrode surface/solution interface. It was verified that the peak current in the voltammograms for ODN lipoplexes was due to guanosine oxidation and that it was influenced both by the applied adsorption potential and the lipoplex (+/-) charge ratio used. It was found that for low ODN lipoplexes (+/-) charge ratios the peak current obtained was enhanced when compared to that registered with free ODN for the same concentration. This allowed a higher sensitivity in the determination of ODN by differential pulse voltammetry and a limit of detection of 5.5 ng/mL was achieved. A model that explains the organisation of ODN lipoplexes at the electrode surface/solution interface is proposed. The electrochemical results presented account for a better physicochemical characterisation of lipoplexes at charged interfaces, which can be important for the understanding and development of gene therapy vectors based on ODN lipoplexes.  相似文献   

13.
Non-viral vectors represent an important alternative in gene delivery. Among these vectors, cationic liposomes are widely studied, because of their ability to form stable complexes with DNA fragments (lipoplexes). In the present work, we report on the characterization by electron spin resonance (ESR) spectroscopy and zeta potential measurements of cationic liposomes and of their complexes with oligonucleotides. Liposomes were made with a zwitterionic lipid, DOPE, and a cationic lipid, either DOTAP or DC-Chol. Oligonucleotides were the 20-base single strand polyA, the 20-base single strand polyT, and the corresponding double strand dsAT. The zeta potential as a function of the oligonucleotide/lipid+ ratio gave an S-shaped titration curve. Well-defined surface potential changes took place upon charge compensation between the cationic lipid heads and the phosphate groups on the oligonucleotides. The inversion point depended on the specific system under study. The bilayer properties and the changes that occurred with the incorporation of DNA fragments were also monitored by ESR spectroscopy of appropriately tailored spin probes. For all the systems investigated, the ESR spectra showed that no major alteration took place after lipoplex formation and molecular packing remained substantially unchanged. Both zeta potential and ESR measurements were in favor of an external mode of packing of the lipoplexes.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1-5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid-DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies.  相似文献   

15.
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA--each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Psi0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Psi0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Psi0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Psi0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA-/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.  相似文献   

16.
Lipoplexes, which are spontaneously formed complexes between oligonucleotide (ODN) and cationic lipid, can be used to deliver ODNs into cells, both in vitro and in vivo. The present study was aimed at characterizing the interactions associated with the formation of lipoplexes, specifically in terms of electrostatics, hydration and particle size. Large unilamellar vesicles (approximately 100 nm diameter), composed of either DOTAP, DOTAP/cholesterol (mole ratio 1:1) or DOTAP/DOPE (mole ratio 1:1) were employed as a model of cationic liposomes. Neutral vesicles ( approximately 100 nm diameter), composed of DOPC/DOPE (mole ratio 1:1), were employed as control liposomes. After ODN addition to vesicles, at different mole ratios, changes in pH and electrical surface potential at the lipid-water interface were analyzed by using the fluorophore heptadecyl-7-hydroxycoumarin. In separate 'mirror image' experiments, liposomes were added at different mole ratios to fluorescein isothiocyanate-labeled ODNs, thus yielding data about changes in the pH near the ODN molecules induced by the complexation with the cationic lipid. Particle size distribution and turbidity fluctuations were analyzed by the use of photon correlation spectroscopy and static light-scattering, respectively. In additional fluorescent probe studies, TMADPH was used to quantify membrane defects while laurdan was used to measure the level of hydration at the water-lipid interface. The results indicate that mutual neutralization of cationic lipids by ODNs and vice versa is a spontaneous reaction and that this neutralization is the main driving force for lipoplex generation. When lipid neutralization is partial, induced membrane defects cause the lipoplexes to exhibit increased size instability.  相似文献   

17.
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.  相似文献   

18.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

19.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

20.
Efficient gene transfer by transferrin lipoplexes in the presence of serum   总被引:1,自引:0,他引:1  
Cationic lipids are being used increasingly as reagents for gene delivery both in vitro and in vivo. One of the limitations to the application of cationic lipid-DNA complexes (lipoplexes) in vivo is the inhibition of gene delivery by serum. In this study, we have shown that transferrin (Tf)-lipoplexes, which had transferrin adsorbed at their surface via electrostatic interactions, are much more effective than plain lipoplexes in transfecting cells in the presence of relatively high concentrations (up to 60%) of fetal bovine serum (FBS). Serum even enhanced transfection by Tf-lipoplexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)/dioleoylphosphatidylethanolamine (DOPE)/pCMVLacZ at high lipid/DNA (+/-) charge ratios, and inhibited lipofection for those with low charge ratios when they were added to the cells immediately after the preparation of complexes. The effect of serum on lipofection was dose-dependent. Preincubation of the complexes at 20 degrees C for 6 h led to serum resistance, even for the negatively charged transferrin-lipoplexes. A similar tendency was observed for DOTAP/cholesterol and DOTAP/DOPE/cholesterol liposomes. The percentage of cells transfected, measured by beta-galactosidase expression, also increased with the serum concentration. Cell viability was not affected significantly when the cells were incubated with the complexes for 4 h at 37 degrees C, followed by a 48-h incubation. Our findings extend the scope of previous studies where transferrin-lipoplexes were used to introduce DNA into cells, rendering these complexes and their future derivatives potential alternatives to viral vectors for gene delivery in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号