首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Highways have significant direct and indirect impact on natural ecosystems, including wildlife barrier and fragmentation effects, resulting in diminished habitat connectivity and highway permeability. We used Global Positioning System (GPS) telemetry to assess Rocky Mountain elk (Cervus elaphus nelsoni) permeability across a 30-km stretch of highway in central Arizona, USA, currently being reconstructed with 11 wildlife underpasses, 6 bridges, and associated ungulate-proof fencing. The highway was reconstructed in phases, allowing for comparison of highway crossing and passage rates during various stages of reconstruction. We instrumented 33 elk (25 F, 8 M) with GPS receiver collars May 2002 to April 2004. Our collars accrued 101,506 GPS fixes with 45% occurring within 1 km of the highway. Nearly 2 times the proportion of fixes occurred within 1 km of the highway compared with random. We think elk were attracted to the highway corridor by riparian—meadow foraging habitats that were 7 times more concentrated within the 1-km zone around the highway compared with the mean proportion within elk use areas encompassing all GPS fixes. Elk crossed the highway 3,057 times; crossing frequency and distribution along the highway were aggregated compared with random. Crossing frequency within 0.16-km highway segments was negatively associated with the distance to riparian—meadow habitats (rs = -0.714, n = 190, P < 0.001). Mean observed crossing frequency (92.6 ± 23.5 [SE] crossings/elk) was lower than random (149.6 ± 27.6 crossings/elk). Females crossed 4.5 times as frequently as males. Highway permeability among reconstruction classes was assessed using passage rates (ratio of highway crossings to approaches); our overall mean passage rate was 0.67 ± 0.08 crossings per approach. The mean passage rate for elk crossing the highway section where reconstruction was completed (0.43 ± 0.15 crossings/approach) was half that of sections under reconstruction and control sections combined (0.86 ± 0.09 crossings/approach). Permeability was jointly influenced by the size of the widened highway and associated vehicular traffic on all lanes. Crossing frequency was used to delineate where ungulate-proof fencing yielded maximum benefit in intercepting and funneling crossing elk toward underpasses, promoting highway safety. Use of passage rates provides a quantitative measure to assess permeability, conduct future pre- and postconstruction comparisons, and to develop mitigation strategies to minimize highway impacts to wildlife.  相似文献   

2.
ABSTRACT We used video surveillance at 4 wildlife underpasses along 27 km of Arizona State Route 260, USA, to monitor elk (Cervus elaphus) responses to traffic volume and traffic type during underpass use. Passage rates at the highest traffic category (>10–27 vehicles/min) were not lower than passage rates when no vehicles were present, whereas passage rates at low, intermittent traffic volume (>0–1 vehicles/min) were 15% lower. Once elk entered an underpass, semi-trailer trucks were 4 times more likely than passenger vehicles to cause flight behavior when traffic levels were intermittent versus when traffic was continuous. Overall, traffic volumes of >10–27 vehicles per minute did not decrease the effectiveness of wildlife underpasses as a means of mitigating elk population subdivision. However, if flight away from underpasses at intermediate traffic levels causes elk to cross the highway at other points and thereby increases the potential for costly elk-vehicle collisions, we recommend that managers consider measures to reduce traffic noise and visual stimuli, especially those caused by semi-trailer trucks.  相似文献   

3.
Mortality from cerebrospinal parelaphostrongylosis caused by the meningeal worm (Parelaphostrongylus tenuis) has been hypothesized to limit elk (Cervus elaphus nelsoni) populations in areas where elk are conspecific with white-tailed deer (Odocoileus virginianus). Elk were reintroduced into Michigan (USA) in the early 1900s and subsequently greatly increased population size and distribution despite sympatric high-density (>or=12/km2) white-tailed deer populations. We monitored 100 radio-collared elk of all age and sex classes from 1981-94, during which time we documented 76 mortalities. Meningeal worm was a minor mortality factor for elk in Michigan and accounted for only 3% of mortalities, fewer than legal harvest (58%), illegal kills (22%), other diseases (7%), and malnutrition (4%). Across years, annual cause-specific mortality rates due to cerebrospinal parelaphostrongylosis were 0.033 (SE=0.006), 0.029 (SE=0.005), 0.000 (SE=0.000), and 0.000 (SE=0.000) for calves, 1-yr-old, 2-yr-old, and >or=3-yr-old, respectively. The overall population-level mortality rate due to cerebrospinal parelaphostrongylosis was 0.009 (SE=0.001). Thus, meningeal worm had little impact on elk in Michigan during our study despite greater than normal precipitation (favoring gastropods) and record (>or=14 km2) deer densities. Further, elk in Michigan have shown sustained population rates-of-increase of >or=18%/yr and among the highest levels of juvenile production and survival recorded for elk in North America, indicating that elk can persist in areas with meningeal worm at high levels of population productivity. It is likely that local ecologic characteristics among elk, white-tailed deer, and gastropods, and degree of exposure, age of elk, individual and population experience with meningeal worm, overall population vigor, and moisture determine the effects of meningeal worm on elk populations.  相似文献   

4.
ABSTRACT We used 38,709 fixes collected from December 2003 through June 2006 from 44 elk (Cervus elaphus) fitted with Global Positioning System collars and hourly traffic data recorded along 27 km of highway in central Arizona, USA, to determine how traffic volume affected elk distribution and highway crossings. The probability of elk occurring near the highway decreased with increasing traffic volume, indicating that elk used habitat near the highway primarily when traffic volumes were low (<100 vehicles/hr). We used multiple logistic regression followed by model selection using Akaike's Information Criterion to identify factors influencing probability of elk crossings. We found that increasing traffic rates reduced the overall probability of highway crossing, but this effect depended on both season and the proximity of riparian meadow habitat. Elk crossed highways at higher traffic volumes when accessing high quality foraging areas. Our results indicate that 1) managers assessing habitat quality for elk in areas with high traffic-volume highways should consider that habitat near highways may be utilized at low traffic volumes, 2) in areas where highways potentially act as barriers to elk movement, increasing traffic volume decreases the probability of highway crossings, but the magnitude of this effect depends on both season and proximity of important resources, and 3) because some highway crossings still occurred at the high traffic volumes we recorded, increasing traffic alone will not prevent elk-vehicle collisions. Managers concerned with elk-vehicle collisions could increase the effectiveness of wildlife crossing structures by placing them near important resources, such as riparian meadow habitat.  相似文献   

5.
ABSTRACT Prey behavioral responses to predation risk in wolf-ungulate-plant systems are of interest to wildlife managers. Using Global Positioning System data collected from telemetry-collared elk (Cervus elaphus) and wolves (Canis lupus), we evaluated elk behavioral responses to spatial and temporal variation in wolf- and human-predation risk on a winter range in the Greater Yellowstone Area, USA. We found elk changed grouping patterns and increased movement rates as predation risk increased and that these behavioral changes were habitat dependent. Elk behavioral responses to wolf- and human-predation risk were similar; however, responses to human-predation risk were stronger than responses to wolf-predation risk. These results suggest that predation risk from wolves or human hunters may result in elk spending more time on private rangelands away from public-land winter ranges, which may exacerbate problems of landowner tolerance of elk on livestock pastures. However, increased movement and changing grouping patterns on winter ranges may also disperse elk grazing impacts and lessen elk impacts on any one area.  相似文献   

6.
ABSTRACT We used integrated video systems to compare wildlife use of 2 bridged wildlife underpasses (UPs) on a reconstructed highway in central Arizona, USA, from September 2002 to September 2005. Both UPs opened into the same riparian—meadow complex, were situated < 250 m apart, and had different below-span characteristics and dimensions. Our objectives were to compare Rocky Mountain elk (Cervus elaphus nelsoni) response to the UPs and test hypotheses that passage rate (crossing frequency/approach frequency), probability of use, and behavioral response at the 2 UPs did not differ. We related differences in elk use and response to UP design characteristics. Elk accounted for >90% of the animals we recorded on videotape, with 3,708 elk in 1,266 groups recorded at the 2 UPs. We used multiple logistic regression to predict the probability of UP use by elk, incorporating the combined effects of UP, season, and year. Season had the greatest effect on UP use, with the probability of UP use in summer (0.81) higher than in winter (0.58), when migratory elk less habituated to the UPs were present. A pattern of high summer (>0.80) and low winter passage rates (<0.40), regardless of UP, existed in all 3 years of video surveillance. Underpass also had an effect on the probability of elk crossing the UPs; the probability of use of the UP with 2 times the openness ratio, one-half the length for elk to traverse, and sloped earthen sides (0.75) was higher than the neighboring UP with concrete walls (0.66). Proportions of elk displaying behaviors indicative of resistance to crossing were dependent on UP and were higher at the UP with concrete walls. In all cases, elk preferred the more open UP with natural earthen sides. We believe that differences in UP length and the concrete walls contributed to differences in elk use and behavioral response. Continued video surveillance of these and other UPs will allow us to evaluate their efficacy in promoting wildlife permeability and safer highways.  相似文献   

7.
We evaluated use of 6 wildlife underpasses (UP) using video camera surveillance along State Route 260 in Arizona, USA. We documented wildlife use and compared successful UP crossings by various species and among UP. From 2002 to 2008, we recorded visits by 15,134 animals of 21 species (16 wildlife, 5 domestic) resulting in 72.4% crossing through UP. Elk (Cervus elaphus) accounted for 68% of recorded animals, white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus) accounted for 13% and 6%, respectively. As elk and white-tailed deer were the only species adequately represented across all UP, we used logistic regression to further evaluate factors associated with successful use of UP. To evaluate habituation over time we limited this analysis to 5 UP monitored for ≥4 yr. For elk, structural attributes and placement, season, time of day, and months monitored were associated with successful elk UP crossing in year 1, however, by year 4 only structural attributes and placement were significant, suggesting that UP structure and placement likely were of primary importance for successful elk passage. By year 4, probabilities of crossing at 4 of 5 UP converged on >0.70, indicating that given sufficient time to allow habituation, most UP we evaluated appeared to be effective for elk, regardless of structural attributes or placement. For deer, only structural attribute and placement were significant, and aside from one structure did not increase in probability of a successful crossing over time. The overall number of animals and species that crossed SR 260 via UP underscores efficacy of UP in promoting multi-species permeability. Long-term monitoring allows wildlife and highway managers to evaluate adaptation to wildlife crossing structures by different species. Results from this study add to our knowledge of mitigating the impact of highways on wildlife. © 2011 The Wildlife Society.  相似文献   

8.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

9.
National parks face problems in managing wild ungulates and their forage resources, including small park sizes and incomplete protection of winter ranges, absence of major predators, and influences from exterior management activities Our study focuses on the effects of elk Cervus elaphus browsing on aspen Populus tremuloides in the elk winter range of Rocky Mountain National Park Elk can prevent successful regeneration of aspen by suckers, and increase the mortality of established trees Here we quantify the effect of elk on aspen in the elk winter range of the park particularly since the adoption of a policy of “natural regulation” in 1968 We collected a stratified-random sample of aspen cohorts in the elk winter range, and also inside two long-term exclosures In each cohort we tallied live and dead trees by diameter, recorded the height and percentage of stem surface covered by bark-stripping, and estimated the date of regeneration of the cohort using increment cores We also tallied live and dead aspen suckers (young trees < 2 5 in tall) by height and the number of live and dead branches on each sucker Aspen outside the exclosures are declining as evidenced by 1) high mortality among established trees, including entire stands that are dead, 2) low density of live suckers, insufficient to regenerate the stand, 3) suckers that are excessively branched and seldom surviving to reach tree height, and 4) almost no cohort regeneration since adoption of natural regulation Exclosures and early photos of the elk winter range suggest these are anomalous conditions Over the last century, aspen cohorts regenerated only when there were fewer than ca 600 elk on the park's elk winter range, far fewer than the present estimated 1600 head Fire suppression, natural succession, fluctuations in beaver populations, climatic fluctuations, and other factors are of no or lesser importance than elk in the regeneration and survival of aspen cohorts on the elk winter range The decline of aspen is a concern when management is focused on the ecosystem scale rather than simply the scale of wildlife and their primary forage resources  相似文献   

10.
Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics. © 2011 The Wildlife Society.  相似文献   

11.
Highway programmes typically focus on reducing vehicle collisions with large mammals because of economic or safety reasons, while overlooking the millions of birds that die annually from traffic. We studied wildlife–vehicle collisions along an interstate highway in southern Idaho, USA, with among the highest reported rates of American Barn Owl Tyto furcata road mortality. Carcass data from systematic and ad hoc surveys conducted in 2004–2006 and 2013–2015 were used to explore the extent to which spatial, road geometric and biotic factors explained Barn Owl–vehicle collisions. Barn Owls outnumbered all other identified vertebrate species of roadkill and represented > 25% of individuals and 73.6% of road‐killed birds. At a 1‐km highway segment scale, the number of dead Barn Owls decreased with increasing numbers of human structures, cumulative length of secondary roads near the highway and width of the highway median. The number of dead Barn Owls increased with higher commercial average annual daily traffic (CAADT), small mammal abundance index and grass rather than shrubs in the roadside verge. The small mammal abundance index was also greater in roadsides with grass vs. mixed shrubs, suggesting that Barn Owls may be attracted to grassy portions of the highway with more abundant small mammals for hunting prey. When assessed at a 3‐km highway segment scale, the number of dead Barn Owls again increased, with higher CAADT as well as with greater numbers of dairy farms. At a 5‐km scale, the number of dead Barn Owls increased with a greater percentage of cropland near the highway. Although human conversion of the environment from natural shrub‐steppe to irrigated agriculture in this region of Idaho has probably enhanced habitat for Barns Owls, it simultaneously has increased risk for owl–vehicle collisions where an interstate highway traverses the altered landscape. We review some approaches for highway mitigation and suggest that reducing wildlife–vehicle collisions involving Barn Owls may contribute to the persistence of this species.  相似文献   

12.
The size of animal populations fluctuates with number of births, rate of immigration, rate of emigration, and number of deaths. For many ungulate populations, adult female survival is the most important factor influencing population growth. Therefore, increased understanding of survival and causes of mortality for adult females is fundamental for conservation and management. The objectives of our study were to quantify survival rates of female elk (Cervus canadensis) and determine cause-specific mortality. We predicted that hunter harvest would be the leading cause of mortality. Further, we predicted that hunters would harvest animals that were in prime age (2–9 yr) and in better condition than elk predated by mountain lions (Puma concolor). From 2015 to 2017, we captured 376 female elk in central Utah, USA. We assessed body size and condition of captured elk, fitted each animal with a global positioning system-collar, and determined cause of death when we received mortality signals. We estimated survival using Kaplan-Meier estimates and Cox proportional hazard models within an Akaike's Information Criterion model selection framework to identify covariates that influenced survival. We analyzed differences in size and condition measurements between harvested elk and predated elk using analysis of variance tests. Our best model indicated consistent survival across years; mean survival was 78.3 ± 3.5% (SE) including hunter harvest and 95.5 ± 1.7% without hunter harvest. In decreasing order of importance, elk mortality occurred from hunter harvest (21.2%), mountain lion predation (3.7%), depredation removal (0.5%), automobile collision (0.3%), disease (0.3%), complications during calving (0.3%), and those characterized as undetermined (1.3%). Neck circumference and body length were negatively associated with survival, suggesting that larger animals in good condition had lower survival as a result of hunter harvest. Individuals that died because of cougar predation were smaller and had less loin muscle than the average animal. Hunters removed large, healthy, prime-aged females, individuals that likely have a greater effect on population growth than elk lost to other predators. If the proportion of larger, healthy females in the population begins to decline, hunting practices may require adjustment because hunters may be removing individuals with the greatest reproductive value. © 2021 The Wildlife Society.  相似文献   

13.
ABSTRACT Wildlife crossing-structures (e.g., underpasses and overpasses) are used to mitigate deleterious effects of highways on wildlife populations. Evaluating performance of mitigation measures depends on monitoring structures for wildlife use. We analyzed efficacy of 2 noninvasive methods commonly used to monitor crossing-structure use by large mammals: tracking and motion-activated cameras. We monitored 15 crossing-structures every other day between 29 June and 24 October 2007 along the Trans-Canada Highway in Alberta, Canada. Our objectives were to determine how species-specific detection rates are biased by the detection method used, to determine factors contributing to crossing-event detection, and to evaluate the most cost-effective approach to monitoring. We detected 3,405 crossing events by tracks and 4,430 crossings events by camera for mammals coyote-sized and larger. Coyotes (Canis latrans) and grizzly bears (Ursus arctos) were significantly more likely to be detected by track-pads, whereas elk (Cervus elaphus) and deer (Odocoileus sp.) were more likely to be detected by cameras. Crossing-event detection was affected by species, track-pad length, and number of animals using the crossing structure. At the levels of animal activity observed in our study our economic analysis indicates that cameras are more cost-effective than track-pads for study durations >1 year. Understanding the benefits and limitations of camera and track-pad methods for monitoring large mammal movement at wildlife crossing-structures will help improve the efficiency of studies designed to evaluate the effectiveness of highway mitigation measures.  相似文献   

14.
Abstract: Decades of research have produced substantial data on elk (Cervus elaphus) diets in winter, when foraging conditions are most likely to affect population dynamics. Using data from 72 studies conducted in western North America between 1938 and 2002, we collated data on elk diets and environmental variables. We used these data to quantify diet selection by elk and to test whether variation in elk diets is associated with habitat type, winter severity, period of winter, human hunting, and study method. Graminoids (grasses and grass-like plants such as sedges) dominated elk diets and consistently occurred at a higher proportion in the diet than in elk foraging habitats, indicating preference. Forbs commonly made up ≤5% of the diet, with no evidence for preference; we conclude that forb use is largely incidental to grazing for graminoids. Browse was consumed in proportion to its availability, implying that the amount of browse in the diet was primarily determined by habitat use rather than selection. Comparing the diets of elk and sympatric ruminants, elk consistently selected graminoids more strongly than sympatric ruminants with the exception of bison (Bison bison), suggesting that elk are not environmentally forced to adopt the graminoid-biased diet that they normally select. The proportion of open meadows and grasslands on winter ranges was strongly and positively associated with graminoid consumption by elk. The proportion of graminoids in the diet was significantly lower in elk experiencing severe winter conditions or predation risk from human hunting. The period of winter (early, middle, and late) had only small effects on elk diets, as did the method by which the diet was determined. Overall, variation in elk diets is well-explained by a consistent tendency to select graminoids if available, modified by winter habitat type, predation risk, and winter severity, which can constrain habitat selection and access to grazing opportunities. To fully understand variation in foraging behavior, biologists should recognize these broad patterns when interpreting resource selection data. Managers should recognize that inconspicuous behavioral responses to environmental stimuli can alter the diet in ways that probably carry nutritional consequences.  相似文献   

15.
Emerging diseases and expanding carnivore populations may have profound implications for ungulate harvest management and population regulation. To better understand effects of chronic wasting disease (CWD) and cougar (Puma concolor) predation, we studied mortality and recruitment of elk (Cervus elaphus) at Wind Cave National Park (WICA) during 2005–2009. We marked 202 elk (83 subadult M and 119 subadult and ad F) with Global Positioning System (GPS) collars, observed 28 deaths during 74,220 days of monitoring, and investigated 42 additional deaths of unmarked elk found dead. Survival rates were similar for males and females and averaged 0.863 (SE = 0.025) annually. Leading causes of mortality included hunting (0.065, SE = 0.019), CWD (0.034, SE = 0.012), and cougar predation (0.029, SE = 0.012). Marked elk killed by hunters and cougars typically were in good physical condition and not infected with CWD. Effects of mortality on population growth were exacerbated by low rates of pregnancy (subadults = 9.5%, SE = 6.6%; ad = 76.9%, SE = 4.2%) and perinatal survival (0.49, SE = 0.085 from 1 Feb to 1 Sep). Chronic wasting disease, increased predation, and reduced recruitment reduced the rate of increase for elk at WICA to approximately λ = 1.00 (SE = 0.027) during the past decade. Lower rates of increase are mitigating effects of elk on park vegetation, other wildlife, and neighboring lands and will facilitate population control, but may reduce opportunities for elk hunting outside the park. © 2011 The Wildlife Society  相似文献   

16.
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis-idaea) were necessary for predicting caribou use of winter range. © 2011 The Wildlife Society  相似文献   

17.
We studied 2 years of postrelease telemetry data of elk (Cervus elaphus) translocated to their historic range limit in Ontario, Canada and sought to determine if postrelease movements were related to behavior, demography of released animals, or site–specific attributes such as length of holding period. During 1998–2004 we radio‐tracked 341 elk in 10 release groups via ground and aerial telemetry and monitored movement patterns relative to gender, age, and pre‐release holding period (4–112 days). We found that elk that were held for short periods prior to release (4–11 days) moved longer distances than those subject to extended conditioning (17–112 days), suggesting that an extended conditioning period is beneficial from the standpoint of promoting philopatry. When all elk were pooled by sex and age class, male calves remained in closer proximity (8.0 ± 13.2 km) to release sites than adult females (19.1 ± 20.6 km), adult males (19.7 ± 15.1 km), and female calves (14.4 ± 20.4 km). Most calves dispersed in a southeasterly direction whereas adults tended to travel southwest. Our results reveal that elk movement characteristics are influenced by factors such as release protocol and group demographics; these findings provide further insight regarding appropriate release methods for restoring natural populations near their historical range limit.  相似文献   

18.
Recent mountain pine beetle (Dendroctonus ponderosae; pine beetle) outbreaks in the western United States have affected nearly 18 million ha of pine (Pinus spp.) forest and are unprecedented in spatial extent, severity, and duration, yet little is known about wildlife responses to large-scale insect outbreaks. Elk (Cervus canadensis) are important wildlife whose dominant management paradigm on public lands has focused on providing security habitat to increase survival during hunting seasons and to maintain elk presence on public lands to promote hunter opportunity. To assess the effect of pine beetles and associated changes in forest structure on elk security, we used a time series to characterize canopy cover pre- and post-pine beetle outbreak, characterized relative canopy cover among the dominant forest types in the study area post-pine beetle outbreak, and used global positioning system location data from male and female elk to define habitat relationships and security during the archery and rifle hunting seasons. Our study area was within the Elkhorn Mountains of southwest Montana, USA, 2015–2017, which experienced 80% mortality of lodgepole pine (Pinus contorta) forests during a pine beetle outbreak that peaked in 2008. We observed an 8.5% reduction in canopy cover within pine beetle-infested lodgepole pine forests, yet canopy cover remained relatively high among other forest types post-outbreak. The top-ranked habitat security models contained positive relationships with canopy cover, distance to motorized routes, terrain ruggedness, and slope with few notable differences among sexes and seasons. Across sexes and seasons, 75% and 50% of elk use was within areas with average canopy cover values ≥31 ± 6.65 (SD)% and ≥53 ± 5.7% that were an average of ≥2,072 ± 187.93 m and ≥3,496 ± 157.32 m from a motorized route, respectively. Therefore, we recommend fall elk security be defined as areas that meet these criteria for minimum canopy cover and distance from motorized routes in the Elkhorn Mountains and in other landscapes with similar forest characteristics and hunting pressures. Although we observed expected reductions in canopy cover within pine beetle-infested forests, defoliation alone did not appear to negatively affect elk security or reduce canopy cover below our management recommendations. Nonetheless, because of the prevalence of standing dead trees in our study area, we recommend future work that investigates the relationships with pine beetle-infested areas post-blowdown because changes in ground structure and costs of locomotion may affect elk habitat and security. © 2019 The Authors. Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

19.
Influences on Release-Site Fidelity of Translocated Elk   总被引:2,自引:0,他引:2  
Several eastern states are considering the restoration of free‐ranging elk populations via translocation from western populations. Optimal habitat immediately surrounding release sites has been found to enhance elk reintroduction success in western states. Little information exists, however, to aid eastern managers in identifying release sites with the highest chance of restoration success. We monitored the movements of 415 translocated elk released at three sites in southeastern Kentucky to identify landscape characteristics that enhance release‐site fidelity. The distance elk moved after release differed among sites (F2,322 = 4.63, p = 0.01), age classes (F2,322 = 4.37, p = 0.01), and time intervals (F2,322 = 40.74, p < 0.001). At 6 and 12 months post‐release, adults (15.81 ± 17.32 and 16.38 ± 20.29) and yearlings (13.91 ± 16.44 and 14.61 ± 21.11) moved farther than calves (8.06 ± 14.03 and 9.37 ± 14.40). The release site with the highest fidelity was privately owned, 15% open, and had the highest amount of edge compared with the other release sites. The two remaining sites contained large amounts of expansive openland or forest cover with lower amounts of edge. Additionally, both sites were publicly owned and experienced a higher degree of human‐generated disturbance compared with the site to which elk were most faithful. When selecting release sites, managers should avoid areas dominated by a single cover type with little interspersion of other habitats. Rather, areas with high levels of open‐forest edge (approximately 5.0 km/km2) and limited‐human disturbance will likely enhance release‐site fidelity and promote restoration success.  相似文献   

20.
Abstract: Recent expansions by Rocky Mountain elk (Cervus elaphus) into nonforested habitats across the Intermountain West have required managers to reconsider the traditional paradigms of forage and cover as they relate to managing elk and their habitats. We examined seasonal habitat selection patterns of a hunted elk population in a nonforested high-desert region of southwestern Wyoming, USA. We used 35,246 global positioning system locations collected from 33 adult female elk to model probability of use as a function of 6 habitat variables: slope, aspect, elevation, habitat diversity, distance to shrub cover, and distance to road. We developed resource selection probability functions for individual elk, and then we averaged the coefficients to estimate population-level models for summer and winter periods. We used the population-level models to generate predictive maps by assigning pixels across the study area to 1 of 4 use categories (i.e., high, medium-high, medium-low, or low), based on quartiles of the predictions. Model coefficients and predictive maps indicated that elk selected for summer habitats characterized by higher elevations in areas of high vegetative diversity, close to shrub cover, northerly aspects, moderate slopes, and away from roads. Winter habitat selection patterns were similar, except elk shifted to areas with lower elevations and southerly aspects. We validated predictive maps by using 528 locations collected from an independent sample of radiomarked elk (n = 55) and calculating the proportion of locations that occurred in each of the 4 use categories. Together, the high- and medium-high use categories of the summer and winter predictive maps contained 92% and 74% of summer and winter elk locations, respectively. Our population-level models and associated predictive maps were successful in predicting winter and summer habitat use by elk in a nonforested environment. In the absence of forest cover, elk seemed to rely on a combination of shrubs, topography, and low human disturbance to meet their thermal and hiding cover requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号