首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis B virus (HBV) budding from infected cells is a tightly regulated process that requires both core and envelope structures. Here we report that HBV uses cellular gamma2-adaptin and Nedd4, possibly in conjunction with ubiquitin, to coordinate its assembly and release. In search of interaction partners of the viral L envelope protein, we previously discovered gamma2-adaptin, a putative endosomal sorting and trafficking adaptor of the adaptor protein complex family. We now demonstrate that the viral core interacts with the same gamma2-adaptor and that disruption of the HBV/gamma2-adaptin interactions inhibits virus production. Mutational analyses revealed a hitherto unknown ubiquitin-binding activity of gamma2-adaptin, specified by a ubiquitin-interacting motif, which contributes to its interaction with core. For core, the lysine residue at position 96, a potential target for ubiquitination, was identified to be essential for both gamma2-adaptin-recognition and virus production. The participation of the cellular ubiquitin system in HBV assembly was further suggested by our finding that core interacts with the endosomal ubiquitin ligase Nedd4, partly via its late domain-like PPAY sequence. Overexpression of a catalytically inactive Nedd4 mutant diminished HBV egress, indicating that protein ubiquitination is functionally involved in virus production. Additional evidence for a link of HBV assembly to the endosomal machinery was provided by immunolabeling studies that demonstrated colocalization of core and L with gamma2-adaptin in compartments positive for the late endosomal marker CD63. Together, these data indicate that an enveloped DNA virus exploits a new ubiquitin receptor together with endosomal pathway functions for egress from hepatocytes.  相似文献   

2.
The budding reactions of a number of enveloped viruses use the cellular machinery involved in the formation of the luminal vesicles of endosomal multivesicular bodies (MVB). Budding of these viruses is dependent on the presence of specific late-domain motifs in membrane-associated viral proteins. Such budding reactions usually involve ubiquitin and are blocked by expression of an ATPase-deficient form of VPS4, a cellular AAA+ ATPase believed to be required late in the MVB pathway for the disassembly/release of the MVB machinery. Here we examined the role of the MVB pathway in the budding of the late-domain-containing rhabdovirus vesicular stomatitis virus (VSV) and the alphavirus Semliki Forest virus (SFV). We tested early and late steps in the MVB pathway by depleting ubiquitin with the proteasome inhibitor MG-132 and by using cell lines inducibly expressing VPS4A or VPS4B protein. As previously shown, VSV budding was strongly dependent on ubiquitin. In contrast to the findings of previous studies with VPS4A, expression of ATPase-deficient mutants of either VPS4A or VPS4B inhibited VSV budding. Inhibition by VPS4 required the presence of the PPPY late domain on the VSV matrix protein and resulted in the accumulation of nonreleased VSV particles at the plasma membrane. In contrast, SFV budding was independent of both ubiquitin and the activity of VPS4, perhaps reflecting the important role of the highly organized envelope protein lattice during alphavirus budding.  相似文献   

3.
The "class E" vacuolar protein sorting (VPS) pathway mediates sorting of ubiquitinated cargo into the forming vesicles of the multivesicular bodies (MVB), and it is essential for down-regulation of signaling by growth factors and budding of enveloped viruses such as Ebola and HIV-1. Work in yeast has identified DOA4 as a gene that is recruited by the class E machinery to remove ubiquitin from the endosomal cargo before it is incorporated into MVB vesicles, but the identity of the mammalian counterpart is unclear. Here we report the interaction of AMSH (associated molecule with the SH3 domain of STAM), an endosomal deubiquitinating enzyme, with the endodomal sorting complex required for transport (ESCRT-III) subunits CHMP1A, CHMP1B, CHMP2A, and CHMP3. We also show that a catalytically inactive AMSH inhibits retroviral budding in a dominant-negative manner and induces the accumulation of ubiquitinated forms of an endosomal cargo, namely murine leukemia virus Gag. Finally, VPS4 and AMSH compete for binding to the C-terminal regions of CHMP1A and CHMP1B, revealing a coordinated interaction with ESCRT-III. Taken together, these results are consistent with a role of AMSH in the deubiquitination of the endosomal cargo preceding lysosomal degradation.  相似文献   

4.
Biochemical Analyses of Human IST1 and Its Function in Cytokinesis   总被引:1,自引:0,他引:1  
The newly described yeast endosomal sorting complexes required for transport (ESCRT) protein increased sodium tolerance-1 (Ist1p) binds the late-acting ESCRT proteins Did2p/charged MVB protein (CHMP) 1 and Vps4p and exhibits synthetic vacuolar protein sorting defects when combined with mutations in the Vta1p/LIP5–Vps60p/CHMP5 complex. Here, we report that human IST1 also functions in the ESCRT pathway and is required for efficient abscission during HeLa cell cytokinesis. IST1 binding interactions with VPS4, CHMP1, LIP5, and ESCRT-I were characterized, and the IST1–VPS4 interaction was investigated in detail. Mutational and NMR spectroscopic studies revealed that the IST1 terminus contains two distinct MIT interacting motifs (MIM1 and MIM2) that wrap around and bind in different groves of the MIT helical bundle. IST1, CHMP1, and VPS4 were recruited to the midbodies of dividing cells, and depleting either IST1 or CHMP1 proteins blocked VPS4 recruitment and abscission. In contrast, IST1 depletion did not inhibit human immunodeficiency virus-1 budding. Thus, IST1 and CHMP1 act together to recruit and modulate specific VPS4 activities required during the final stages of cell division.  相似文献   

5.
Charged MVB protein 5 (CHMP5) is a coiled coil protein homologous to the yeast Vps60/Mos10 gene and other ESCRT-III complex members, although its precise function in either yeast or mammalian cells is unknown. We deleted the CHMP5 gene in mice, resulting in a phenotype of early embryonic lethality, reflecting defective late endosome function and dysregulation of signal transduction. Chmp5-/- cells exhibit enlarged late endosomal compartments that contain abundant internal vesicles expressing proteins that are characteristic of late endosomes and lysosomes. This is in contrast to ESCRT-III mutants in yeast, which are defective in multivesicular body (MVB) formation. The degradative capacity of Chmp5-/- cells was reduced, and undigested proteins from multiple pathways accumulated in enlarged MVBs that failed to traffic their cargo to lysosomes. Therefore, CHMP5 regulates late endosome function downstream of MVB formation, and the loss of CHMP5 enhances signal transduction by inhibiting lysosomal degradation of activated receptors.  相似文献   

6.
Irie T  Sakaguchi T 《Uirusu》2007,57(1):1-7
Our knowledge about envelope virus budding has been dramatically increased, since L-domain motifs were identified within their matrix and retroviral Gag proteins which drive virus budding. These viral proteins have been shown to interact with host cellular proteins involved in endocytosis and/or multi-vesicular body (MVB) sorting via their L-domains. Since budding of many enveloped viruses have been reported to be dependent on the activity of cellular Vps4, which catalyzes the disassembly of ESCRT machinery in the final step of protein sorting, this cellular function is believed to be utilized for efficient virus budding. However, for many enveloped viruses, L-domain motifs have not yet been identified, and the involvement of MVB sorting machinery in virus budding is still unknown. In this review, we will focus on paramyxoviruses among such viruses, and discuss their budding with the latest information.  相似文献   

7.
During endocytic transport, specific integral membrane proteins are sorted into intraluminal vesicles that bud from the limiting membrane of the endosome. This process, known as multivesicular body (MVB) sorting, is important for several important biological processes. Moreover, components of the MVB sorting machinery are implicated in virus budding. During MVB sorting, a cargo protein recruits components of the MVB sorting machinery from cytoplasmic pools and these sequentially assemble on the endosome. Disassembly of these proteins and recycling into the cytoplasm is critical for MVB sorting. Vacuolar protein sorting 4 (Vps4) is an AAA (ATPase associated with a variety of cellular activities) ATPase which has been proposed to play a critical role in disassembly of the MVB sorting machinery. However, the mechanism by which it disassembles the complex is not clear. Vps4 contains an N-terminal microtubule interacting and trafficking (MIT) domain, which has previously been shown to be required for recruitment to endosomes, and a single AAA ATPase domain, the activity of which is required for Vps4 function. In this study we have systematically characterized the interaction of Vps4 with other components of the MVB sorting machinery. We demonstrate that Vps4 interacts directly with Vps2 and Bro1. We also show that a subset of Vps4 interactions is regulated by ATP hydrolysis, and one interaction is regulated by ATP binding. Finally, we show that most proteins interact with the Vps4 MIT domain. Our studies indicate that the MIT domain has a dual role in substrate binding and recruitment to endosomes and indicate that Vps4 disassembles the MVB sorting machinery by direct effects on multiple proteins.  相似文献   

8.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

9.
10.
The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle.  相似文献   

11.
Ist1 regulates Vps4 localization and assembly   总被引:1,自引:1,他引:0  
The ESCRT protein complexes are recruited from the cytoplasm and assemble on the endosomal membrane into a protein network that functions in sorting of ubiquitinated transmembrane proteins into the multivesicular body (MVB) pathway. This transport pathway packages cargo proteins into vesicles that bud from the MVB limiting membrane into the lumen of the compartment and delivers these vesicles to the lysosome/vacuole for degradation. The dissociation of ESCRT machinery by the AAA-type ATPase Vps4 is a necessary late step in the formation of MVB vesicles. This ATP-consuming step is regulated by several Vps4-interacting proteins, including the newly identified regulator Ist1. Our data suggest that Ist1 has a dual role in the regulation of Vps4 activity: it localizes to the ESCRT machinery via Did2 where it positively regulates recruitment of Vps4 and it negatively regulates Vps4 by forming an Ist1-Vps4 heterodimer, in which Vps4 cannot bind to the ESCRT machinery. The activity of the MVB pathway might be in part determined by outcome of these two competing activities.  相似文献   

12.
The protein network of HIV budding   总被引:38,自引:0,他引:38  
HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.  相似文献   

13.
gamma2-Adaptin is a putative member of the clathrin adaptor protein family with unknown physiological function. We previously reported that gamma2-adaptin acts as a ubiquitin receptor by virtue of its ubiquitin-interacting motif. Here we demonstrate that this motif mediates a specific physical interaction with the ubiquitin ligase Nedd4 and promotes ubiquitination of gamma2-adaptin. By mapping regions of Nedd4 involved in binding to gamma2-adaptin, we identified its C2 domain to be essential, whereas the WW and HECT domains are dispensable. Consistent with this, we uncovered that the C2 domain of Nedd4 is ubiquitinated itself and as such is recruited by the ubiquitin-interacting motif of gamma2-adaptin for subsequent ubiquitin conjugation. Unlike known coupled ubiquitination reactions, this novel type of interaction leads to mono- and multi/polyubiquitinated gamma2-adaptin. In addition, we show that gamma2-adaptin functions in the endosomal/multivesicular body (MVB) pathway. Depletion of gamma2-adaptin impairs the degradation of internalized epidermal growth factor and results in defective MVB morphology characterized by significantly enlarged vesicles. These defects cannot be rescued by gamma1-adaptin, a closely related homolog of gamma2-adaptin, which is unable to bind ubiquitin. Together, these results indicate that gamma2-adaptin may operate within the MVB sorting system in a manner different from that of classic adaptins.  相似文献   

14.
The AAA-ATPase Vps4 is critical for function of the MVB sorting pathway, which in turn impacts cellular phenomena ranging from receptor downregulation to viral budding to cytokinesis. Vps4 dissociates ESCRTs from endosomal membranes during MVB sorting, but it is unclear how Vps4 ATPase activity is synchronized with ESCRT release. Vta1 potentiates Vps4 activity and interacts with ESCRT-III family members. We have investigated the impact of Vta1 and ESCRT-III family members on Vps4 ATPase activity. Two distinct mechanisms of Vps4 stimulation are described: Vps2 can directly stimulate Vps4 via its MIT domain, whereas Vps60 stimulates via Vta1. Moreover, Did2 can stimulate Vps4 by both mechanisms in distinct contexts. Recent structural determination of the ESCRT-III-binding region of Vta1 unexpectedly revealed a MIT-like region. These data support a model wherein a network of MIT and MIT-like domain interactions with ESCRT-III subunits contributes to the regulation of Vps4 activity during MVB sorting.  相似文献   

15.
Multivesicular body (MVB) formation is the result of invagination and budding of the endosomal limiting membrane into its intralumenal space. These intralumenal vesicles (ILVs) contain a subset of endosomal transmembrane cargoes destined for degradation within the lysosome, the result of active selection during MVB sorting. Membrane bending and scission during ILV formation is topologically similar to cytokinesis in that both events require the abscission of a membrane neck that is oriented away from the cytoplasm. The endosomal sorting complexes required for transport (ESCRTs) represent cellular machinery whose function makes essential contributions to both of these processes. In particular, the AAA-ATPase Vps4 and its substrate ESCRT-III are key components that seem to execute the membrane abscission reaction. This review summarizes current knowledge about the Vps4-ESCRT-III system and discusses a model for how the recruitment of Vps4 to the different sites of function might be regulated.  相似文献   

16.
Multivesicular bodies (MVBs) are late endosomal compartments containing luminal vesicles (MVB vesicles) that are formed by inward budding of the endosomal membrane. In budding yeast, MVBs are an important cellular mechanism for the transport of membrane proteins to the vacuolar lumen. This process requires a class E subset of vacuolar protein sorting (VPS) genes. VPS44 (allelic to NHX1) encodes an endosome-localized Na(+)/H(+) exchanger. The function of the VPS44 exchanger in the context of vacuolar protein transport is largely unknown. Using a cell-free MVB formation assay system, we demonstrated that Nhx1p is required for the efficient formation of MVB vesicles in the late endosome. The recruitment of Vps27p, a class E Vps protein, to the endosomal membrane was dependent on Nhx1p activity and was enhanced by an acidic pH at the endosomal surface. Taken together, we propose that Nhx1p contributes to MVB formation by the recruitment of Vps27p to the endosomal membrane, possibly through Nhx1p antiporter activity.  相似文献   

17.
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.  相似文献   

18.
The vacuolar protein sorting 4 (Vps4) protein is essential for the multivesicular body (MVB) pathway, virus budding process and cytokinesis. Vps4 has been identified and characterized from many species, but not from silkworm Bombyx mori. In this study, we firstly identified and cloned the silkworm homologous gene for VPS4, expressed it in Escherichia coli, purified and characterized the protein designated as BmVps4. The BmVps4 cDNA contains an open reading frame of 1,314?bp, and encodes a protein of 438 amino acid residues. BmVps4 is of high sequence-similarity to Vps4 proteins from other species. The recombinant BmVps4 shows ATPase activity, which can be stimulated by Mg2+ and inhibited by dominant mutations. Together, our data suggest BmVps4 is the genuine silkworm homologue of Vps4. To our knowledge, this is the first-time characterization of any silkworm MVB proteins. This study will facilitate further investigation of silkworm MVB pathway and its possible roles in the infection and budding of B. mori nuclear polyhedrosis virus (BmNPV), which is one of the most common and severe pathogens for silkworms. The cloned BmVps4 sequence is deposited in GenBank (Accession number GQ995504).  相似文献   

19.
转运必需内体分选复合物(endosomal sorting complex required for transport, ESCRT)系统是真核细胞中完成内体(endosome)膜内陷以形成多囊泡体(multi-vesicular body, MVB)的分子机器.其主要功能是促进被泛素(ubiquitin)标记的膜蛋白的降解, 还与细胞分裂、病毒出芽、细胞自噬以及真菌pH感知相关. ESCRT系统包括ESCRT-0,-Ⅰ,-Ⅱ,-Ⅲ和Vps4-Vta1共5个蛋白 蛋白复合物.晶体学研究已经解析了大部分复合物的结构. 其促使膜内陷的分子机理一般认为分3步. 首先是ESCRT-Ⅰ和-Ⅱ在内体膜上结合并促使内体膜内陷形成初始芽体. 之后,ESCRT-Ⅲ在芽体颈部聚合并导致芽体的剪切,从而将内腔囊泡(intralumenal vesicles, ILVs)释放到内体腔内,形成MVB. 最后,Vps4/Vta1复合物则以水解ATP提供能量将聚合的ESCRT-Ⅲ解聚以循环使用,完成更多的出芽过程.本文将对ESCRT系统的结构、出芽机理和生物功能几方面做一个综述.  相似文献   

20.
Sorting of ubiquitinated endosomal membrane proteins into the MVB pathway is executed by the class E Vps protein complexes ESCRT-I, -II, and -III, and the AAA-type ATPase Vps4. This study characterizes ESCRT-II, a soluble approximately 155 kDa protein complex formed by the class E Vps proteins Vps22, Vps25, and Vps36. This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo. We propose that the ESCRT complexes perform a coordinated cascade of events to select and sort MVB cargoes for delivery to the lumen of the vacuole/lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号