首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies of synchronization of spermatogenesis following vitamin A deficiency have suggested that this may provide an in vivo model for the study of stage-dependent changes in hormonal action and protein secretion within the seminiferous epithelium. However, until now, no information on the stability or durability of this condition has been available. In this study, 200 seminiferous tubules from each of 40 rats (including controls) were classified according to their spermatogenic stage after withdrawal and replenishment of vitamin A. Following 15 wk withdrawal and subsequent replenishment of vitamin A, spermatogenesis was initiated in a synchronous fashion. This synchrony remained stable for more than 10 cycles of the seminiferous epithelium (2.5 spermatogenic cycles). In association with the extended period of vitamin A deficiency, a proportion of tubules (30%) showed morphological characteristics of either Sertoli cells only or Sertoli cells plus spermatogonia with occasional pachytene spermatocytes. During the 11-wk period of observation in this study, no significant change in proportions of damaged tubules were observed. Testicular testosterone concentrations, although elevated with respect to controls, showed no correlation with the stage of the cycle of the seminiferous epithelium observed, whereas pituitary and serum follicle-stimulating hormone levels were elevated, probably due to the number of damaged tubules observed. The persistence of synchrony in spermatogenesis following vitamin A treatment suggests that this model is applicable for studies of paracrine actions within the testis. However, the decreased ratio of synchrony observed with time may provide evidence that duration of the individual stages of the cycle of the seminiferous epithelium might be subject to temporal variation, leading to a progressive desynchronization of spermatogenesis in this model system.  相似文献   

2.
Using a variation of a previously published method for manipulating vitamin A levels, we obtained synchronized rat testes and determined the frequency of stages of the seminiferous epithelium in each rat. In this study, we have demonstrated a method for quantitative analysis of the synchrony. The degree of synchronization was expressed as a fraction of the cycle of the seminiferous epithelium, and thus in terms not influenced by the different durations of the stages of this cycle. The median stage about which the tubules were synchronized was calculated. This method may be used to compare the effects of different synchronizing treatments, which may be subtle, and to study various aspects of spermatogenesis in the synchronized testes. For example, the duration of the cycle of the seminiferous epithelium in synchronized testes is estimated to be 12.5 days.  相似文献   

3.
A treatment which used vitamin A depletion followed by vitamin A repletion was used to synchronize seminiferous tubules to a few related stages of the cycle of the seminiferous epithelium. The success of the synchronization procedure was dependent on the age and size of the rat at the initiation of the experiment (20 days of age and 35-40 g) and the extent to which the vitamin A deficiency had progressed. Administration of retinol was done when the only viable germinal cells in the testis were preleptotene spermatocytes and type A spermatogonia but if the deficiency was prolonged spermatogenesis did not recover. Once established synchrony appeared to be sustained at least through several consecutive cycles. A combination of molecular probes was used to determine if the synchronized testes displayed stage specific variations in Sertoli cell and germinal cell mRNA levels as has been reported for normal asynchronized rats. Sertoli cells in the synchronized testes were shown by quantitative in situ hybridization and by Northern blot analysis to have stage specific variations in the levels of mRNA for transferrin, sulfated glycoprotein-1, and sulfated glycoprotein-2. The mRNA levels in the different stages were qualitatively similar to those in equivalent stages previously reported for testes from asynchronous rats. The germinal cell content of the synchronized testes were examined with Northern blots probed with nick-translated protamine 1 and transition protein 1 cDNAs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At that time, only Sertoli cells and A spermatogonia were present in the seminiferous epithelium. These spermatogonia were topographically arranged as single and paired cells and as clones of 4, 8 and more cells. A few mitoses of single, paired, and clones of 4 A spermatogonia were found, which were randomly distributed over the seminiferous epithelium. When vitamin A-deficient mice were treated with retinol-acetate combined with a normal vitamin A-containing diet, spermatogenesis restarted again synchronously. Only a few successive stages of the cycle of the seminiferous epithelium were present up to at least 43 days after vitamin A replacement. After 20 days, 98.3% of the seminiferous tubules were synchronized, showing pachytene spermatocytes as the most advanced cell type, mostly being in epithelium stages IX-XII. After 35 and 43 days, spermatogenesis was complete in 99.6% of the tubular cross sections, and most tubular cross sections were in stages IV-VII of the cycle of the seminiferous epithelium. The degree of synchronization was comparable or even higher than found in rats. The rate of development of the spermatogenic cells between 8 and 43 days after vitamin A replacement seemed to be similar to that in normal mice. Assuming that the rate of development of the spermatogenic cells is also normal during the first 8 days after vitamin A replacement, it can be deduced that the preleptotene spermatocytes, present after 8 days, were A spermatogonia in the beginning of stage VIII at the moment of vitamin A replacement. These results indicate that the mouse can be used as a model to study epithelial stage-dependent processes in the testis.  相似文献   

5.
The relationship between the intactness of sustentacular (Sertoli) cell tight junctions and the status of spermatogenesis was examined in rats fed a vitamin-A-deficient diet after weaning (VAD rats). Both serum and testicular retinol concentrations of the VAD rats declined to a nadir by 80 days of age. At this time, it was observed that Sertoli cell tight junctions of the VAD animals were intact and complete spermatogenesis was maintained. Leakage in Sertoli cell tight junctions, as demonstrated by the presence of lanthanum in the adluminal compartment of the seminiferous epithelium, was first observed in 90-day-old VAD rats. Severe regression of spermatogenic cells was noted in 100-day or older VAD animals. These results suggest that severe germ cell loss observed during chronic vitamin A deficiency may result from abnormal intratubular environment due to the disruption of the blood-testis barrier.  相似文献   

6.
Using the vitamin A depletion-replacement rat model to obtain testicular synchrony, we examined the reproducibility and degree of synchronization obtained by two different protocols. In the original protocol (A), synchrony was achieved by use of retinol alone. In protocol B, retinoic acid was used during the final days of vitamin A depletion as a supplement to retinol. With protocol A, a total of 56 rats were analyzed by an adaptation of a previously published method for quantifying synchrony. Animals treated by protocol A demonstrated a reproducible degree of synchrony although variability was high among individual animals. A smaller group of animals treated with protocol B demonstrated a lower degree of synchrony. In contrast, the midpoint of synchrony (point in the cycle at which 50% of the stages are more advanced and 50% are less advanced) was a more constant value and was not different between the two treatments. The midpoints of synchrony obtained from both protocols were used to calculate a cycle duration of 300 h for our strain of Sprague-Dawley rats. Our results indicate that while the use of either protocol can reproducibly provide testicular synchrony, protocol A results in a higher degree of synchrony. The ability to synchronize testes to selected stages provides sufficient experimental material for the study of the molecular and cellular events of spermatogenesis.  相似文献   

7.
After 20-day-old rats are placed on a vitamin-A-deficient diet (VAD) for a period of 10 weeks, the seminiferous tubules are found to contain only Sertoli cells and a small number of spermatogonia and spermatocytes. Retinol administration to VAD rats reinitiates spermatogenesis, but a stage-synchronization of the seminiferous epithelium throughout the testis of these rats is observed. In order to determine which cell type is responsible for this synchronization, the germ cell population has been analyzed in whole mounts of seminiferous tubules dissected from the testes of rats submitted to the following treatments. Twenty-day-old rats received a VAD diet for 10 weeks and then were divided into three groups of six rats. In group 1, all animals were sacrificed immediately; in group 2, the rats were injected once with retinol and sacrificed 3 hr later; in group 3, the rats were injected once with retinol, placed on a retinol-containing diet for 7 days and 3 hr, and then sacrificed. Three rats from each group had one testis injected with 3H-thymidine 3 hr (groups 1 and 2) or 7 days and 3 hr (group 3) before sacrifice. Three normal adult rats (approximately 100 days old) served as controls. Labeled and unlabeled germinal cells were mapped and scored in isolated seminiferous tubules. In group 1, type A1 and type A0 spermatogonia as well as some preleptotene spermatocytes were present; type A2, A3, A4, In, and B spermatogonia were completely eliminated from the testis. Neither type A1 mitotic figures nor 3H-thymidine-labeled-type A1 nuclei were seen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rats maintained on a diet deficient in retinol and retinoic acid were given a diet containing retinoic acid for 21-29 days after the start of weight loss. The testes of four of these rats were studied. Spermatogonia of all types were observed, though in lower numbers than in controls, and their mitotic activity was normal. Normal preleptotene spermatocytes were encountered, but no normal spermatocytes in further stages of development were seen. Pale cells that appeared to be in prophase were observed. It was concluded that, in retinol-deficient rats maintained on retinoic acid, the spermatogonial population is qualitatively normal, but quantitatively subnormal, while spermatocyte development is qualitatively and quantitatively abnormal. No evidence of spermatogonial arrest or any other form of synchronization was found in testes of these rats, but when the remaining rats were injected with retinol, the seminiferous epithelium did show stage synchronization at 36 and 128 days after the injection.  相似文献   

9.
Three trials utilizing 231 beef heifers were conducted in 1993 to determine if a timed insemination would result in similar synchronized pregnancy rates as insemination by estrus following synchronization of estrus using the 14-d MGA-prostaglandin system. All heifers were fed 0.5 mg MGA/h/d fof 14 d and given a 25 mg injection of PGF(2)alpha im 17 d after the final day of MGA feeding. Heifers in Group 1 (timed AI treatment) were inseminated at 72 h after the prostaglandin injection independent of whether or not they were observed in estrus. Heifers in Group 2 (AI by estrus) were inseminated 12 to 18 h after the onset of estrus. Since the trial was a significant source of variation for synchronized pregnancy rate, the effect of treatment on pregnancy rate was analyzed for each trial. Synchronized pregnancy rates in Trials 2 and 3 were similar in both treatment groups; 37 vs 35% and 61 vs 58% for the timed AI vs AI by estrus (Groups 1 and 2) in Trials 2 and 3, respectively. In both of these trials the degree of estrous synchrony was high. In Trial 1, the synchronized pregnancy rate in heifers that were time-inseminated was significantly lower than that of heifers that were inseminated by estrus (29 vs 57%). The lower synchronized pregnancy rate of Group 1 (timed AI) heifers in Trial 1 appeared to be due to the low degree of estrous synchrony in this trial. Our results indicate that using timed insemination with the 14-d MGA-prostaglandin system will give similar synchronized pregnancy rates as inseminating by estrus in groups of beef heifers where the degree of synchrony is high. However, in heifers where the degree of estrous synchrony is low, a timed insemination reduces synchronized pregnancy rates.  相似文献   

10.
In the spring of 1986, 506 beef cows were used to evaluate the effectiveness of two estrus synchronization systems. Cows were synchronized with either a 6-mg Norgestomet implant placed in the ear for 14 d followed by a 6-mg Alfaprostol injection given 16 d after implant removal (Norgestomet-Alfaprostol) or with Syncro-Mate B (6-mg Norgestomet implant for 9 d with an injection containing 5 mg estradiol valerate and 3 mg Norgestomet at the time of implantation). The Alfaprostol injection in the Norgestomet-Alfaprostol group was given the same day as implant removal in the Syncro-Mate B group. These treatment groups were compared to a group of untreated controls. Cows were allotted to treatments by days postpartum, age and breed. Syncro-Mate B cows had a higher estrous response within 5 d after treatment (78.6 vs 64.0%) and a shorter interval to estrus (39.2 vs 66.7 h) than did Norgestomet-Alfaprostol cows (P < 0.05). Controls had a significantly lower estrous response compared to either of the synchronized groups (27.1%). The degree of estrus synchrony was identical in both synchronization systems (72.7%). Synchronized conception rate tended to be higher (P = 0.06) in the Norgestomet-Alfaprostol cows than in the Syncro-Mate B cows (74.5 vs 62.5%). Synchronized, 21-d, 25-d and breeding season pregnancy rates were 51.2, 70.8, 76.8 and 92.9% for Norgestomet-Alfaprostol cows; 48.5, 63.0, 73.2 and 87.8% for Syncro-Mate B cows; and 15.6, 56.3, 61.3 and 86.9% for control cows. The four pregnancy rates were not different between the two synchronization treatments (P > 0.10). Controls had lower synchronized and 25-d pregnancy rates when compared to either of the synchronized groups (P < 0.05). Days postpartum had no effect on the reproductive performance of cows synchronized with Norgestomet-Alfaprostol. Our results indicate that the Norgestomet-Alfaprostol system is as effective as Syncro-Mate B in synchronizing estrus in beef cows.  相似文献   

11.
The objective of this study was to further understand the genetic mechanisms of vitamin A deficiency (VAD) induced arrest of spermatogonial stem-cell differentiation.Vitamin A and its derivatives (the retinoids) participate in many physiological processes including vision, cellular differentiation and reproduction. VAD affects spermatogenesis, the subject of our present study. Spermatogenesis is a highly regulated process of differentiation and complex morphologic alterations that leads to the formation of sperm in the seminiferous epithelium. VAD causes early cessation of spermatogenesis, characterized by degeneration of meiotic germ cells, leading to seminiferous tubules containing mostly type A spermatogonia and Sertoli cells. These observations led us to the hypothesis that VAD affects not only germ cells but also somatic cells.To investigate the effects of VAD on spermatogenesis in mice we used adult Balb/C mice fed with Control or VAD diet for an extended period of time (6–28 weeks). We first observed the chronology, then the extent of the effects of VAD on the testes. Using microarray analysis of isolated pure populations of spermatogonia, Leydig and Sertoli cells from control and VAD 18- and 25-week mice, we examined the effects of VAD on gene expression and identified target genes involved in the arrest of spermatogonial differentiation and spermatogenesis.Our results provide a more precise definition of the chronology and magnitude of the consequences of VAD on mouse testes than the previously available literature and highlight direct and indirect (via somatic cells) effects of VAD on germ cell differentiation.  相似文献   

12.
This is the first report in literature showing the length of the seminiferous epithelium cycle in goats. In the present study, the duration of spermatogenesis was estimated using intratesticular injections of tritiated thymidine. Animals were castrated at 4 h, 7 days, and 11 days after injections. The duration of each spermatogenic cycle in goats is 10.6 +/- 0.5 days (SEM). Considering that the total duration of spermatogenesis takes about 4.5 cycles of seminiferous epithelium, spermatogenesis was estimated to last 47.7 days. The approximate primary spermatocytes life span is 14.1 days, while spermiogenesis in goats lasts 14.9 days. Staging in goats was based on the tubular morphology, where 8 stages of the cycle are yielded for all species. The relative stage frequencies in goats, based on 400 seminiferous tubule cross sections for each animal were as follows: stage 1: 15.8 +/- 1.0%; stage 2: 12.8 +/- 0.5%; stage 3: 20.5 +/- 0.9%; stage 4: 10.7 +/- 0.7%; stage 5: 11.6 +/- 0.6%; stage 6: 9.3 +/- 1.1%; stage 7: 7.6 +/- 0.4%; stage 8: 11.7 +/- 0.6%. The pre-meiotic, meiotic and post-meiotic phases' relative frequencies were 49.1%, 10.7% and 40.2%, respectively. The duration of spermatogenesis in goats is very similar to that found in rams.  相似文献   

13.
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.  相似文献   

14.
Three hundred and ten yearling heifers of various breeds were used in five trials to compare two estrus synchronization treatments. Treatment 1 consisted of Melengestrol Acetate-Prostaglandin F(2)alpha (MGA-PGF(2)alpha). Heifers were fed 0.5 mg MGA/head/d for 14 to 16 d. Sixteen or 17 d after the final MGA feeding, heifers were injected i.m. with 25 mg PGF(2)alpha. Treatment 2 consisted of Syncro-Mate B (SMB). Heifers were given a 9-d norgestomet implant plus an injection containing 3 mg norgestomet and 5 mg estradiol valerate i.m. at implant insertion. Heifers were observed for estrus at 6-h intervals for 120 h after the end of treatments and were artificially inseminated 12 to 18 h after observed estrus. Heifers synchronized with MGA-PGF(2)alpha and SMB had a similar (P > 0.10) estrous response (83.4 vs 90.2%) and a similar (P > 0.10) degree of synchrony (71.8 vs 79.0%) following treatment. However, the synchronized conception rate (68.7 vs 40.6%) and the synchronized pregnancy rate (57.3 vs 36.6%) were higher (P < 0.01) in MGA-PGF(2)alpha than SMB heifers. Breeding season pregnancy rates were similar in both treatment groups. Heifers in both groups that were classified as cycling prior to initiation of treatment had improved reproductive performance following synchronization compared with those classified as noncycling. Based on higher synchronized conception and pregnancy rates and lower labor requirements and drug costs, the MGA-PGF(2)alpha system appears to be a better method to synchronize estrus in beef heifers than the SMB system.  相似文献   

15.
We study the loss of synchronization of two partially coupled space-clamped Hodgkin-Huxley equations, with symmetric coupling. This models the coupling of two cells through an electrical synapse. For strong enough coupling it is known that all solutions of the equations approach a state where the two cells are perfectly synchronized, having the same behaviour at each moment. We describe the local bifurcations that arise when the coupling strength is reduced, using a mixture of analytical and numerical methods. We find that perfect synchrony is retained for very small positive values of the coupling strength, for almost all initial conditions. Although perfect synchrony is lost for negative values of the coupling constant, the system always retains some degree of synchronization until it becomes totally unstable. This happens in two ways: in many cases for almost all initial conditions the solutions still approach a perfectly synchronized state. Even when this is not true, the attracting solutions are still synchronized, with a half-period phase shift.  相似文献   

16.
Testicular weight and DNA content were markedly reduced (63 and 69%) in weanling Long-Evans rat pups rendered hypothyroid from birth by administration of propylthiouracil (PTU), a reversible goitrogen. These growth deficits worsened to >80% by continuing hypothyroidism beyond weaning, to days 50 and 90. Recovery of thyroid function, brought about by discontinuing PTU at weaning, resulted in a paradoxical stimulation of testis growth, amounting to increased weight (40%), DNA content (60%) and size by 90 days, compared to age-matched controls. In the 25-day or older hypothyroid rats, testicular structure was immature and spermatogenesis markedly delayed, as evident by closed lumen and significantly reduced diameter of seminiferous tubules (38%), thickness of germinal layer (70%), and number of primary spermatocytes (86%), compared to control. Hypothyroidism did not alter the number of tubules per testis cross section. In the 90-day recovery rats, numbers of seminiferous tubules were unchanged but tubular diameter was significantly (20%) larger than in controls and spermatogenesis appeared very active as indicated by significantly increased germinal layer thickness (22%) and total number and density of primary spermatocytes (55% and 40%). The results show that although postnatal hypothyroidism is deleterious for testicular growth and spermatogenesis, recovery from this condition leads to enhanced seminiferous tubular growth and spermatogenesis.  相似文献   

17.
We studied the male reproductive cycle in a population of Ophisops elegans from Mount Sannine, Lebanon, by histological analysis. Testicular histology showed active spermatogenesis in spring, followed by a testicular regression at the end of summer and a subsequent recrudescence in autumn. Monthly variations in the epididymis, the ductus deferens and the sexual segment of the kidney were in synchrony with the testicular cycle. They were hypertrophied as spermatogenetic activity increased and atrophied as spermatogenetic activity decreased. Males of O. elegans showed a vernal type of spermatogenesis with a close relationship between the evolution of the seminiferous tubules and the secondary sexual characters.  相似文献   

18.
We describe here morphological and functional analyses of the spermatogenic process in sexually mature white-lipped peccaries. Ten sexually mature male animals, weighing approximately 39 kg were studied. Characteristics investigated included the gonadosomatic index (GSI), relative frequency of stages of the cycle of seminiferous epithelium (CSE), cell populations present in the seminiferous epithelium in stage 1 of CSE, intrinsic rate of spermatogenesis, Sertoli cell index, height of seminiferous epithelium and diameter of seminiferous tubules, volumetric proportion of components of the testicular parenchyma and length of seminiferous tubules per testis and per gram of testis. The GSI was 0.19%, relative frequencies of pre-meiotic, meiotic and post-meiotic phases were, respectively 43.6%, 13.8% and 42.6%, general rate of spermatogenesis was 25.8, each Sertoli cell supported an average 18.4 germinative cells, height of seminiferous epithelium and diameter of seminiferous tubules were, respectively, 78.4 microm and 225.6 microm, testicular parenchyma was composed by 75.8% seminiferous tubules and 24.2% intertubular tissue, and length of seminiferous tubules per gram of testis was 15.8m. These results show that, except for overall rate of spermatogenesis, the spermatogenic process in white-lipped peccaries is very similar to that of collared peccaries, and that Sertoli cells have a greater capacity to support germinative cells than most domestic mammals.  相似文献   

19.
The estrous cycles of adult female rats were synchronized with an LHRH agonist on the morning of Day -4 (Day 0 = day of mating). On Day -2, animals received s.c. implants of continuous-infusion osmotic minipumps containing different doses of an FSH preparation (Folltropin) in combination with hCG at various ratios of hCG:FSH or were given single injections of eCG in doses ranging from 15 IU to 60 IU. Rats infused with the optimal dose (3.4 U/day) of FSH ovulated 44.1 +/- 5.4 oocytes/rat while rats treated with the most effective dose (60 IU) of eCG ovulated only 20.5 +/- 4.3 oocytes/rat on the morning of Day 1. The inclusion of hCG in pumps at ratios from 0.188:1 to 0.75:1 (hCG:FSH) had no significant effect on ovulation rate. The importance of synchronization of estrus in successful superovulation was demonstrated by the finding that only 70% of the unsynchronized animals ovulated (29.1 +/- 4.8 oocytes/rat) whereas 95% of the synchronized animals ovulated (51.0 +/- 3.6 oocytes/rat). Oocyte viabilities were assessed by determining fertilization rates and embryonic development in vivo following mating with fertile males. In rats superovulated by use of the FSH regimen, 92% (39.0 +/- 4.1) of the recovered embryos were 1-cell zygotes on Day 1, 89% (36.3 +/- 5.6) were at the 2-cell embryo stage of development on Day 2, and 88% (28.8 +/- 2.2) were at the morula and blastocyst stages on Day 5 following mating on Day 0. The high ovulation rates and oocyte viability in rats receiving infusions of Folltropin following estrus synchronization offer a reliable method for superovulation of adult rats.  相似文献   

20.
Treatments designed to synchronize luteolysis, preovulatory follicular development, and ovulation, and resynchronize estrus after a first AI have improved responses to synchronization treatments. Protocols based only on the use of PGF result in variable onset of estrus. Concentrations of progesterone prior to administering PGF have affected submission rates and fertility while administration of estradiol benzoate (EB) after inducing luteolysis has improved the synchrony of estrus and ovulation in some studies. In pasture-based dairy cows, GnRH-based protocols have generally resulted in one-third of both anestrous and cycling cows conceiving following synchronization of ovulation and timed AI. Protocols which use intravaginal progesterone releasing inserts (IVP4) are effective in inducing estrus in over 90% of treated dairy cows. Resynchronization of estrus after reinsertion of an IVP4 also improves the synchrony of returns to estrus, but pregnancy rates to the first AI have been reduced in some studies, and submission rates at a resynchronized estrus are less than at the first synchronized estrus. Administration of EB can be used to synchronize follicle wave emergence in resynchronized cows with intervals to new wave emergence comparable to that in cows synchronized for a first AI, but plasma concentrations of progesterone following treatment may be reduced. Synchronization of estrus and ovulation can be enhanced by administration of EB or GnRH during proestrus, but dose, timing and stage of follicular development at the time of treatment can affect outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号