共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
驱动蛋白是一类能够利用ATP水解释放的化学能驱动其所携带的“货物”分子沿着微管(microtubule,MT)定向运动的分子马达,在细胞器运输、有丝分裂、轴突运输等方面有着重要的生理作用。随着驱动蛋白结合ADP、ATP和未结合核苷酸(APO)三种特征状态的晶体结构的解析,驱动蛋白构象变化的研究得到了进一步发展,而在力产生机制和运动模型方面仍然存在较大争议。本文以kinesin-1家族为例,分析了驱动蛋白三种特征状态结构的特点、状态结构间的构象转变,论述了驱动蛋白的力产生机制和整个迈步过程。并探讨了驱动蛋白的运动模型,同时采用分子动力学模拟比较了驱动蛋白的两种迈步方式,为深入研究驱动蛋白提供了一定的理论计算。最后,基于本课题组对复杂体系的研究,对驱动蛋白体系的控制机制提出了新的假设,并对未来的研究方向进行了展望。 相似文献
3.
4.
5.
细胞器沿着微管的转运能够用分离出的成份重新建立,从而对这一复杂的运动过程得以进行生物化学的剖析.这一技术途径己导致一个新颖的、普遍存在的、以微管为基础产生动力的蛋白质的提纯,称之为驱动蛋白(Kinesin,源于希腊语运动).驱动蛋白的体外运动性质和免疫细胞化学定位提示,它可能作为细胞器转运和有丝分裂中微管依赖性运动的原动力而起作用. 相似文献
6.
通过建立非平衡涨落下的随机跃迁的两态模型,并利用非对称的周期势和Fokker-Planck方程及其本征值法计算两态模型的几率流和稳态几率流密。结果表明马达蛋白的定向运动与有效势的整体倾斜斜率有关,定性讨论了系统能量转换效率与负载有关。 相似文献
7.
微管是细胞骨架的主要成分之一,几乎存在于所有真核生物细胞之中,参与细胞众多生理功能。PP2A是真核生物体内存在最广泛的蛋白磷酸酶之一,可以调控大部分细胞生命活动,其中,包括微管所介导的许多生命活动。该文从以下方面介绍了PP2A在微管功能行使中的重要作用,包括PP2A参与微管蛋白翻译后修饰、调控分子马达和微管相关蛋白的活性、维持细胞周期中微管的动态平衡以及PP2A异常与微管类疾病的相关性。 相似文献
8.
9.
目的:研究低温对脑缺血后沙土鼠微管运动蛋白(Kinesin)微管结构蛋白(microtubule associated protein 2,MAP2)活性的影响,并探讨二者活性变化与延迟性神经元死亡(delayed neuronal death,DND)的关系。方法:Kinesin和MAP2的活性应用免疫组织化学染色结合计算机图象分析的方法测定,DND应用病理检查方法判断。结果:低温明显减少脑缺血后的DND。前脑缺血再灌注后MAP2和kinesin活性随再灌注时间延长而进行性下降,且kinesin活性下降程度大于MAP2。低温明显减少脑缺血后MAP2和kinesin活性的下降程度。Kinesin活性下降的严重程度与脑缺血后DND的严重程度相一致。结论:低温可明显减少脑缺血后的DND,其机制与其减少脑缺血后运动蛋白kine-sin活性的下降有关。 相似文献
10.
目的 驱动蛋白3的颈部螺旋与其后的蛋白质序列相互关联,形成一个延长的颈部,其中包含一个特征铰链结构。该特征性铰链在不同的驱动蛋白中表现出多样性,在驱动蛋白KIF13B中,这个铰链仅由一个脯氨酸残基组成,而在驱动蛋白KIF1A中,则由一个长的柔性无规卷曲构成。然而,这个颈部铰链在控制驱动蛋白持续运动方面的功能仍不明确。方法 本文对KIF13B和KIF1A的颈部铰链区的氨基酸残基进行突变改造,并通过单分子运动实验研究铰链区突变对驱动蛋白运动行为的影响。结果 在KIF13B中,在铰链区——脯氨酸前后插入柔性残基对其运动的速度以及持续性都有不同程度的影响,而去除该脯氨酸则可以同时提高运动速度和持续性。在KIF1A中,删除整个柔性颈部铰链仅仅增强了其运动的持续性。同时,把驱动蛋白1的颈部铰链区用改造后的驱动蛋白3的颈部铰链区进行替换,同样能够提高驱动蛋白1的持续运动能力。结论 驱动蛋白3颈部铰链控制其持续运动能力,适当改造可以调整马达的运动行为,这为重塑驱动蛋白马达的持续运动提供了一种新策略。 相似文献
11.
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested. 相似文献
12.
Microtubule plus ends are dynamically regulated by a wide variety of proteins for performing diverse cellular functions. Here, we show that the fission yeast Schizosaccharomyces pombe uncharacterized protein mcp1p is a microtubule plus-end tracking protein which depends on the kinesin-8 klp6p for transporting along microtubules towards microtubule plus ends. In the absence of mcp1p, microtubule catastrophe and rescue frequencies decrease, leading to an increased dwell time of microtubule plus ends at cell tips. Thus, these findings suggest that mcp1p may synergize with klp6p at microtubule plus-ends to destabilize microtubules. 相似文献
13.
Upon recovery from nocodazole treatment, microtubules from cultured epithelial cells exhibit unusual properties: they re-grow as fast as any highly dynamic microtubule, but they are also protected against disassembly when challenged with nocodazole like the stable microtubules of steady-state cells. Exploring the mechanism that underlies this protection, we found that it was sensitive to ATP treatment and that it involved conventional kinesin. Kinesin localized at the growing end or along nascent microtubules. Its inhibition using a dominant-negative construct for cargo binding, or by micro-injecting an anti-kinesin heavy chain antibody that impairs motor activity, resulted in the partial or total loss of microtubule protection. Finally, in an ex vivo elongation assay, we found that kinesin also participates in the control of microtubule re-growth. Altogether, our findings suggest that kinesin is involved in an early microtubule protection process that is linked to the control of their dynamics during their early growth phase. 相似文献
14.
Joseph Atherton Anne Houdusse Carolyn Moores 《Biology of the cell / under the auspices of the European Cell Biology Organization》2013,105(10):465-487
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long‐distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio‐temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub‐domain‐specific microtubule (MT) tracks, sign‐posted by different tubulin isoforms, tubulin post‐translational modifications, tubulin GTPase activity and MT‐associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that – especially for axonal cargo – alterations to the MT track can influence transport, although in vivo, it is likely that multiple track‐based effects act synergistically to ensure accurate cargo distribution. 相似文献
15.
Vale RD 《Trends in cell biology》1999,9(12):259-M42
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades. 相似文献
16.
Drummond DR 《Seminars in cell & developmental biology》2011,(9):927-934
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins. 相似文献
17.
Ronald D. Vale 《Trends in genetics : TIG》1999,15(12):161-M42
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades. 相似文献
18.
Ronald D. Vale 《Trends in biochemical sciences》1999,24(12):1005-M42
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades. 相似文献
19.
The Drosophila non-claret disjunctional (Ncd) kinesin-like protein is required for spindle assembly in oocytes and spindle maintenance in early embryos. Through the action of ATP-dependent microtubule (MT)-binding sites in the head and ATP-independent MT-binding sites in the tail, Ncd may bundle and, perhaps, slide MTs relative to each other. Our previous work on the MT-binding site of the Ncd tail domain demonstrated that this site, like the MT-binding sites of tau, contains basic residues flanked by proline residues and can promote MT assembly and stability. Here, we characterize the interactions of a monomeric Ncd tail protein with subtilisin-digested MTs in order to identify sites on the tubulin dimer that interact with the Ncd tail. The results provide evidence for four such binding sites per tubulin dimer and support the hypothesis that each binding site consists of a cluster of acidic residues in the C-terminal regions of alpha- and beta-tubulin. 相似文献
20.
During plant cytokinesis, kinesin-related motor proteins are believed to play critical roles in microtubule organization and vesicle transport in the phragmoplast. Previously, we reported that the motor AtPAKRP1 was associated with the plus end of phragmoplast microtubules in Arabidopsis thaliana [Lee Y-RJ, Liu B (2000) Curr Biol 10:797–800]. In this paper, we report a full-length cDNA from the same organism, which encodes a polypeptide 74% identical to AtPAKRP1. This AtPAKRP1-like protein—AtPAKRP1L—and AtPAKRP1 share similar domain structures along the polypeptides. Peptide antibodies were raised and purified to distinguish the two polypeptides in vitro and in vivo. When monospecific anti-AtPAKRP1 and anti-AtPAKRP1L antibodies were used in immunofluorescence, they both decorated the plus end of phragmoplast microtubules at all stages of phragmoplast development. Their localization patterns were indistinguishable from each other. By using bacterially expressed fusion proteins of motor-less versions of both polypeptides, it was revealed that AtPAKRP1 and AtPAKRP1L were able to interact with themselves and with each other. Using T-DNA insertional mutants, it was also demonstrated that AtPAKRP1 and AtPAKRP1L were not required for each others localization. Our results therefore indicate that AtPAKRP1 and AtPAKRP1L are both expressed in the same cells, and likely have identical functions in the phragmoplast by forming either homodimers or heterodimers.Abbreviations AtPAKRP1 Arabidopsis thaliana phragmoplast-associated kinesin-related protein 1 - AtPAKRP1L A. thaliana phragmoplast-associated kinesin-related protein 1-like - GST Glutathione S-transferase - KRP Kinesin-related protein - 6×His Six-histidine tag 相似文献