共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1997 and the first half of 1998, numerous publications appeared reporting studies of cofactors and their analogues in classical model systems and in enzyme-catalyzed reactions directed at understanding the enzymatic reactions of their natural cofactors. Model systems based on flavins have provided new insights into enzymatic modulation of the flavin reduction potential, and enzymatic reactions of coenzyme A analogues and derivatives have been employed in several studies of coenzyme A utilizing enzymes. Coenzyme B12 analogues have been utilized as alternate cofactors for B12-utilizing enzymes, while pyrroloquinoline quinone esters and analogues have been employed in model studies of the reactions of quinoprotein-catalyzed reactions. 相似文献
2.
Sonia Longhi Mirjam Czjzek Christian Cambillau 《Current opinion in structural biology》1998,8(6):730-737
The ever growing availability of macromolecular crystal structures determined at atomic resolution has now reached a critical size, making it possible to obtain statistically unbiased data on both protein stereochemistry and the validity of the parameters used in their refinement. Besides the determination of the precise geometry of proteins and their active sites, high resolution structures have made it possible to check the application of normal mode calculations, to calculate charge density distributions and to analyze hydration shells around protein molecules. Even if only a few structures involve protein complexes, either with ligands or prosthetic groups, the information obtained in these cases is of great interest for obtaining the physical parameters of these interactions. 相似文献
3.
d-amino acid oxidase is the prototype of flavin-dependent oxidases. The recent resolution of its 3D structure has provided an explanation for several of its properties and has led to a substantial revision of the mechanism of d-amino acid dehydrogenation, with significant implications for the general uderstanding of flavin-dependent catalysis 相似文献
4.
Coenzyme A is involved in a number of important metabolic pathways. Recently the structures of several coenzyme A binding proteins have been determined. We compare in some detail the structures of seven different coenzyme A protein complexes. These seven proteins all have distinctly different folds. 相似文献
5.
The rapidly changing developments in genomics and combinatorial chemistry, generating new drug targets and large numbers of compounds, have caused a revolution in high-throughput screening technologies. Key to this revolution has been the introduction of robotics and automation, together with new biological assay technologies (e.g., homogeneous time resolved fluorescence). With ever increasing workloads, together with economic and logistical constraints, miniaturisation is rapidly becoming essential for the future of high-throughput screening and combinatorial chemistry. This is evident from the introduction of high-density microtitre plates, small volume liquid handling robots and associated detection technology. 相似文献
6.
7.
A theozyme is a theoretical enzyme constructed by computing the optimal geometry for transition-state stabilization by functional groups. It is created in order to permit quantitative assessment of catalytic function. Theozymes have been used to elucidate the role of transition-state stabilization in the mechanisms underlying enzyme- and antibody-catalyzed hydroxyepoxide cyclizations, eliminations and decarboxylations, peptide and ester hydrolyses, and pericyclic and radical reactions. The enzymes studied include orotodine monophosphate decarboxylase, HIV protease and ribonucleotide reductase. 相似文献
8.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins. 相似文献
9.
Verde F 《Current opinion in microbiology》1998,1(6):712-718
In the past year, we have gained considerable insight into the process of cell morphogenesis and the establishment of positional information in fission yeast. The highlights include a better understanding of the role of the microtubule cytoskeleton in the control of cell shape, as well as the identification of novel genes essential for the establishment of cell polarity and for the positioning of the site of cell division. 相似文献
10.
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains. 相似文献
11.
Recent work, combining direct study of ion channels and synapses with pharmacological manipulations and realistic computer simulations, has deepened our understanding of how motor circuits produce rhythmic outputs. In several preparations, both the roles of some key ionic currents in circuit operation and the mechanisms by which circuit operation may be modulated have been identified. 相似文献
12.
Eswaran J Koronakis E Higgins MK Hughes C Koronakis V 《Current opinion in structural biology》2004,14(6):405-747
Bacterial multidrug resistance is a serious clinical problem and is commonly conferred by tripartite efflux 'pumps' in the prokaryotic cell envelope. Crystal structures of the three components of a drug efflux pump have now been solved: the outer membrane TolC exit duct in the year 2000, the inner membrane AcrB antiporter in 2002 and the periplasmic adaptor MexA in 2004. These structures have enhanced our understanding of the principles underlying pump assembly and operation, and present pumps as new drug targets. 相似文献
13.
Müller M 《Current opinion in biotechnology》2004,15(6):2540-598
Diversity constitutes an intrinsic property of biosynthesis. This inherent property can be exploited and successfully applied in organic synthesis. Recent advances have been made in many areas, including the use of multifunctional enzymes and catalytic promiscuity, the synthesis of diverse products from a single substrate, the use of different biotransformations to make one product, and the use of in vivo biotransformations. 相似文献
14.
How does the CNS coordinate muscle contractions between different body segments during normal locomotion? Work on several preparations has shown that this coordination relies on excitability gradients and on differences between ascending and descending intersegmental coupling. Abstract models involving chains of coupled oscillators have defined properties of coordinating circuits that would permit them to establish a constant intersegmental phase in the face of changing periods. Analyses that combine computational and experimental strategies have led to new insights into the cellular organization of intersegmental coordinating circuits and the neural control of swimming in lamprey, tadpole, crayfish and leech. 相似文献
15.
16.
Hazel M Holden James B Thoden Frank M Raushel 《Current opinion in structural biology》1998,8(6):679-685
The direct transfer of metabolites from one protein to another in a biochemical pathway or between one active site and another within a single enzyme has been described as substrate channeling. The first structural visualization of such a phenomenon was provided by the X-ray crystallographic analysis of tryptophan synthase, in which a tunnel of approximately 25 Å in length was observed. The recently determined three-dimensional structure of carbamoyl phosphate synthetase sets a new long distance record in that the three active sites are separated by nearly 100 Å. 相似文献
17.
Garry Taylor 《Current opinion in structural biology》1996,6(6):830-837
The structure-based design of a potent inhibitor of the influenza-virus neuraminidase (sialidase) is one of the outstanding successes of rational drug design. Recent clinical trials of the drug have stimulated many companies to seek a share of the potentially huge flu market. Sialidases, however, are involved in the pathogenesis of a whole range of other diseases, so perhaps the knowledge and expertise gained from the influenza story can be used in the design of other drugs, given that they all share certain structural features. 相似文献
18.
Crystal structures of the negatively cooperative aspartate receptor caught at intermediate stages in the binding process help to elucidate structural factors involved in ligand binding. The frequency of occurrence of negatively cooperative proteins suggests that sequential changes in binding patterns will be extensive in positively cooperative as well as in negatively cooperative and no cooperativity proteins. 相似文献
19.
The structure of tubulin has recently been determined by electron crystallography, paving the way for a clearer understandin of the unique properties of tubulin that allow its varied functions within the cell. Some of the ongoing work on tubulin can be interpreted in terms of its structure, which can serve to guide future studies. 相似文献
20.
Phillip A Patten Russell J Howard Willem PC Stemmer 《Current opinion in biotechnology》1997,8(6):724-733
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models. 相似文献