首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The chloroplast (cp) DNA type and mitochondrial (mt) DNA composition of 17 somatic hybrids between a cytoplasmic albino tomato and monoploid potato (A7-hybrids) and 18 somatic hybrids between a nitrate reductase-deficient tomato and monoploid potato (C7-hybrids) were analyzed. Thirteen A7-hybrids and 9 C7-hybrids were triploids (with one potato genome); the other hybrids were tetraploid. As expected, all A7-hybrids contained potato cpDNA. Of the C7-hybrids 7 had tomato cpDNA, 10 had potato cpDNA and 1 hybrid contained both tomato and potato cpDNA. The mtDNA composition of the hybrids was analyzed by hybridization of Southern blots with four mtDNA-specific probes. The mtDNAs in the hybrids had segregated independently from the cpDNAs. Nuclear DNA composition (i.e. one or two potato genomes) did not influence the chloroplast type in the C7-hybrids, nor the mtDNA composition of A7- or C7-hybrids. From the cosegregation of specific mtDNA fragments we inferred that both tomato and potato mtDNAs probably have a coxII gene closely linked to 18S+5S rRNA genes. In tomato, atpA, and in potato, atp6 seems to be linked to these mtDNA genes.  相似文献   

2.
Summary Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 105/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46–48 (expected 2n=4x=48) and pollen viability was 5%–70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.Michigan Agricultural Experiment Station Journal Article No. 12545  相似文献   

3.
RFLP (restriction fragment length polymorphism) was employed to analyze cytoplasmic genome of diploid somatic hybrid plant, morphologically similar to rough lemon which was leaf parent, that was produced via protoplast fusion between rough lemon (Citrus jambhiri Lush) and Hamlin sweet orange (C. sinensis Osb.), the embryogenic parent. Three enzyme-mitocondrial probe combinations and one enzyme-chloroplast probe combination demonstrated that the plant had identical band profiles to Hamlin sweet orange as far as mtDNA and cpDNA were concerned.  相似文献   

4.
RFLP (restriction fragment length polymorphism) was employed to analyze cytoplasmic genome of diploid somatic hybrid plant, morphologically similar to rough lemon which was leaf parent, that was produced via protoplast fusion between rough lemon (Citrus jambhiri Lush) and Hamlin sweet orange (C. sinensis Osb.), the embryogenic parent. Three enzyme-mitocondrial probe combinations and one enzyme-chloroplast probe combination demonstrated that the plant had identical band profiles to Hamlin sweet orange as far as mtDNA and cpDNA were concerned.  相似文献   

5.
Somatic hybrids were obtained by the symmetric fusion of embryogenic callus cells from tetraploid Mame kumquat [Fortunella hindsii (Champ.) Swing.] and mesophyll cells from diploid trifoliate orange [Poncirus trifoliata (L.) Raf.]. Southern blot analysis of three regenerants revealed that they carried specific rDNA fragments from both fusion partners, thereby confirming their hybridity. In contrast, mitochondrial DNA (mtDNA) and chloroblast DNA (cpDNA) were unidirectionally transmitted from the callus parent without any evidence of recombination. No differences in the restriction fragment patterns of rDNA, mtDNA or cpDNA could be detected among the regenerants. Flow cytometry showed that two regenerants were hexaploids, as expected, but that one was pentaploid, probably due to elimination of chromosomes prior to the regeneration of this plant.Abbreviations MS Murashige and Skoog (1962) - DIG digoxigenin - AMPPD 3-(2-spiroadamantane)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane - FACS fluorescence-activated cell sorter  相似文献   

6.
采用流式细胞术(flow cytometry,FCM)、简单重复序列(simple sequence repeat,SSR)和酶切扩增多型性序列(cleaved amplifiedpolymorphic sequence,CAPS)等技术分析酸橙(Citrus aurantium L.)叶肉原生质体和甜橙(C.sinenis Osbeck cv.Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种.FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体.用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本.在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种.通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样.结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本.讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用.  相似文献   

7.
Mitochondrial DNA (mtDNA) from cell suspension cultures of two intergeneric somatic hybrids of Pennisetum americanum (pearl millet) + Saccharum officinarum (sugarcane) was examined by restriction endonuclease digestion and hybridization with sorghum mtDNA cosmids. The mtDNA of one somatic hybrid was indistinguishable from that of pearl millet, while the second exhibited a combination of parental mtDNAs, suggesting mitochondrial fusion. Several novel, possibly recombinant, mtDNA restriction fragments were detected in this hybrid, which may have resulted from intergenmic recombination.Florida Agriculture Experiment Station Journal Series No: 8090.  相似文献   

8.
Summary Chloroplast DNA (cpDNA) was purified from blue spruce (Picea pungens Engelm.) and white spruce [P. glauca (Moench) Voss], and was digested with several different restriction endonucleases. Restriction fragment length polymorphisms (RFLPs) were identified that differentiated the cpDNA of both species. Intraspecific conservation of the RFLPs that differentiated each species was confirmed by examining trees from across the natural range of each species. Ten F1 hybrids were examined, and the cpDNA from each showed the banding pattern of the paternal species. Cloned Petunia cpDNA containing part of the rbcL gene hybridized to polymorphic bands, while a cloned maize mtDNA probe of the coxII gene failed to hybridize to any band.  相似文献   

9.
甜橙与酸橙体细胞杂种核质组成鉴定(英文)   总被引:2,自引:0,他引:2  
采用流式细胞术(flow cytometry, FCM)、简单重复序列(simple sequence repeat, SSR)和酶切扩增多型性序列(cleaved amplified polymorphic sequence, CAPS)等技术分析酸橙(Citrus aurantium L. )叶肉原生质体和甜橙(C. sinenis Osbeck cv. Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种。FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体。用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本。在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种。通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样。结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本。讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用。  相似文献   

10.
Fu CH  Chen CL  Guo WW  Deng XX 《Plant cell reports》2004,23(6):391-396
Intergeneric somatic hybrids combining Goutou sour orange (Citrus aurantium L.) with trifoliate orange [Poncirus trifoliata (L.) Raf] were produced by electrofusion and their genetic inheritance analyzed by amplified fragment length polymorphism (AFLP), genomic in situ hybridization (GISH), and PCR-restriction fragment length polymorphism (PCR-RFLP). Sixteen mini-calluses were obtained after 20 days of culture; they all developed into embryoids on EME500 medium. Following several subcultures on shoot induction medium for a total culture period of 6 months, shoots regenerated. The plants grew vigorously with a well-developed root system and exhibited the trifoliate leaf character of P. trifoliata. Ploidy analysis verified that all of the regenerates were tetraploids (2n=4x=36) as expected. GISH analysis confirmed that 18 chromosomes came from trifoliate orange and the remaining 18 from Goutou sour orange, as with most symmetric somatic hybrid plants; moreover, chromosome translocations were also observed in one plant. AFLP analysis of 16 regenerates and their fusion parents indicated that all of the somatic hybrids except one were genetically uniform. Analysis of the somatic hybrid cytoplasmic genomes with universal primers revealed that their chloroplast DNA (cpDNA) banding patterns were identical to those of the mesophyll parent trifoliate orange, while their mitochondria (mt) genomes were of the callus parent sour orange. The potential of GISH in Citrus somatic hybrid analysis is discussed.The first two authors contributed equally to this paper.  相似文献   

11.
We have regenerated altotetraploid plants that are interspecific somatic hybrids between Citrus sinensis Osbeck cv. Yoshida navel orange and Citrus unshiu Marc cv. Okitsu satsuma mandarin. Protoplasts isolated from ‘Yoshida’ leaves were chemically fused with call us-derived protoplasts from ‘Okitsu’. After 6 months of culture, 102 plants were obtained. These hybrids were identified by differential leaf morphology, DNA fluorescence intensity, and DNA analysis. Ploidy analysis via the flow cytometry revealed that 15 of the 102 plants were tetraploids, with the rest being diploids that morphologically resembled their mesophyll parent. SRAP analysis confirmed that 9 of the tetraploid plants were allotetraploid somatic hybrids. These will be utilized as a possible pollen parents for improving seedy citrus cultivars, e.g., ponkan, mandarin, lemon and kumquat, in order to produce triploid seedless hybrids.  相似文献   

12.
Summary The chloroplast genomes of three sets of Petunia somatic hybrids were analyzed to examine the relationship between chloroplast DNA (cpDNA) composition and cytoplasmic male sterility (CMS). Chloroplast genomes of somatic hybrid plants were identified either by restriction and electrophoresis of purified cpDNAs or by hybridization of total DNA digests with cloned cpDNA probes that distinguish the parental genomes.The chloroplast genomes of a set of seven somatic hybrids derived from the fusion of Petunia CMS line 2423 and fertile line 3699 were analyzed. All seven plants were fertile, and all exhibited the cpDNA restriction pattern of the sterile cytoplasm. Similarly, four fertile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3677 were found to contain the CMS chloroplast genome. The cpDNA compositions of four fertile and two sterile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3704 were determined by restriction analysis of purified cpDNAs; all six plants exhibited the cpDNA restriction pattern of line 3704. Thus the CMS phenotype segregates independently of the chloroplast genome in Petunia somatic hybrids, indicating that CMS in Petunia is not specified by the chloroplast genome.  相似文献   

13.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

14.
The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.  相似文献   

15.
Summary Somatic hybrid plants were produced by protoplast fusion of navel orange and Murcott tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.Contribution No. E-132 of the Fruit Tree Research Station  相似文献   

16.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

17.
A somatic hybrid plant was obtained by protoplast fusion between navel orange and satsuma mandarin. Protoplasts isolated from nucellar calli of navel orange and from leaves of satsuma mandarin were fused by the PEG method. The fusion products were cultured in a Murashige & Tucker medium containing 0.6 M sucrose. In this medium, some colonies developed into whole plants through embryogenesis. One of the regenerated plants was shown to be a hybrid, which was proven by restriction endonuclease analysis of nuclear ribosomal DNA. The chromosome number of the hybrid was 36. Both parents have a chromosome number 2n=18.  相似文献   

18.
In hybrid cells, not only are the nuclear genomes of parent cells fused, but their cytoplasm is as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm that allows us to gain insight into the organization of hybrid-cell cytoplasm. We analyzed the parental mtDNA in hybrid cells resulting from the fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of parental mtDNA in hybrid cells was based on polymorphism among parental mtDNA for certain restriction endonucleases. We found that intra- and interspecific ES cell-splenocyte hybrid cells either entirely or partially lost mtDNA derived from a somatic partner, whereas ES cell-fibroblast hybrids retained mtDNA from both parents in similar ratios with a slight bias. The loss of somatic mitochondria by ES-splenocyte hybrids implies a nonrandom segregation of parental mitochondria, which was supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from the analysis of mtDNA in single cells. Preferential segregation of somatic mitochondria does not depend on the differences in sequences of the parental mtDNA, but rather on the replicative state of parental cells.  相似文献   

19.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

20.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号