首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
The early phylogeny of the 137 species in the Bovidae family is difficult to resolve; knowledge of the evolution and relationships of the tribes would facilitate comparative mapping, understanding chromosomal evolution patterns and perhaps assist breeding and domestication strategies. We found that the study of the presence and organization of two repetitive DNA satellite sequences (the clone pOaKB9 from sheep, a member of the 1.714 satellite I family and the pBtKB5, a 1.715 satellite I clone from cattle) on the X and autosomal chromosomes by in situ hybridization to chromosomes from 15 species of seven tribes, was informative. The results support a consistent phylogeny, suggesting that the primitive form of the X chromosome is acrocentric, and has satellite I sequences at its centromere. Because of the distribution of the ancient satellite I sequence, the X chromosome from the extant Tragelaphini (e.g. oryx), rather than Caprini (sheep), line is most primitive. The Bovini (cow) and Tragelaphini tribes lack the 1.714 satellite present in the other tribes, and this satellite is evolutionarily younger than the 1.715 sequence, with absence of the 1.714 sequence being a marker for the Bovini and Tragelaphini tribes (the Bovinae subfamily). In the other tribes, three (Reduncini, Hippotragini and Aepycerotini) have both 1.714 and 1.715 satellite sequences present on both autosomes and the X chromosome. We suggest a parallel event in two lineages, leading to X chromosomes with the loss of 1.715 satellite from the Bovini, and the loss of both 1.714 and 1.715 satellites in a monophyletic Caprini and Alcelaphini lineage. The presence and X chromosome distribution of these satellite sequences allow the seven tribes to be distributed to four groups, which are consistent with current diversity estimates, and support one model to resolve points of separation of the tribes.  相似文献   

2.
The evolution of chromosomes in species in the family Bovidae includes fusion and fission of chromosome arms (giving different numbers of acrocentric and metacentric chromosomes with a relatively conserved total number of arms) and evolution in both DNA sequence and copy number of the pericentromeric alpha-satellite I repetitive DNA sequence. Here, a probe representing the sheep alpha-satellite I sequence was isolated and hybridized to genomic DNA digests and metaphase chromosomes from various Bovidae species. The probe was highly homologous to the centromeric sequence in all species in the tribe Caprini, including sheep (Ovis aries), goat (Capra hircus) and the aoudad or Barbary sheep (Amnotragus lervia), but showed no detectable hybridization to the alpha-satellite I sequence present in the tribe Bovini and at most very weak to species in the tribes Hippotragini, Alcelaphini or Aepycerotini. The sex chromosomes of sheep, goat and aoudad did not contain detectable alpha-satellite I sequence; in sheep, one of the three metacentric autosomal chromosomes does not carry the sequence, while in aoudad, it is essentially absent in three large autosomal pairs as well as the large metacentric chromosome pair. The satellite probes can be used as robust chromosome and karyotype markers of evolution among tribes and increase the resolution of the evolutionary tree at the base of the Artiodactyla.  相似文献   

3.
To elucidate the systematic status of the enigmatic saola (Pseudoryx nghetinhensis), a new bovid genus recently discovered in Vietnam, and to investigate phylogenetic relationships within the family Bovidae, four distinct DNA markers were sequenced. Complete mitochondrial cytochrome b (1143 bp) and 12S rRNA (956 bp) genes and non-coding regions from the nuclear genes for aromatase cytochrome P-450 (199 bp) and lactoferrin (338 bp) have been compared for 25 bovid species and three Cervidae and Antilocapridae outgroups. Independent and/or combined analyses of the four nucleotide matrices through maximum parsimony and maximum-likelihood methods indicated that Bovidae consists of two major lineages, i.e. Bovinac which contains the tribes Bovini, Boselaphini and Tragelaphini, and Antilopinae which encompasses all other bovids. Within Bovinae, the tribe Bovini is divided into buffalo Bovini (Bubalus and Syncerus) and cattle Bovini (Bos and Bison) and Tragelaphini are possibly related to Boselaphini. Pseudoryx is shown to be (i) robustly nested within Bovinae; (ii) strongly associated with Bovini; and (iii) tentatively sharing a sister-group relationship with cattle Bovini. Within Antilopinae, three robust clades are in evidence: (i) Hippotragus and Damaliscus are linked to Ovis; (ii) Aepyceros joins Neotragus; and (iii) Cephalophus clusters with Oreotragus.  相似文献   

4.
We describe a phylogeny of the Bovidae based on 40 allozyme loci in 27 species, representing 10 of the 14 bovid tribes described by Vrba (1985). Giraffe represented a related family (Giraffidae). A phenogram was derived using the unweighted pair-group method with arithmetic means (UPGMA), based on Nei's genetic distances (ND) between species. A tree was also derived using the neighbor-joining technique, also based on ND. To provide a cladistic interpretation, the data were analyzed by a maximum parsimony method (phylogenetic analysis using parsimony, PAUP). We found marked divergence within the Bovidae, consistent with the appearance of the family in the early Miocene. Unexpectedly, the most divergent species was the impala, which occupied a basal position in all trees. Species in the tribe Alcelaphini were the most derived taxa in all trees. These patterns conflict strongly with the previous taxonomic alliance, based on immuno-distance and anatomical evidence, of the impala as a sister group of the Alcelaphini. All trees agreed that tribes described by Vrba (1985) are monophyletic, except the Neotragini, which was polyphyletic, with suni occupying a long branch by itself. The dikdik and klipspringer were consistently placed as sister taxa to species in the Antilopini. Three tribes (Aepycerotini, Tragelaphini and Cephalophini), whose fossils have not been found outside Africa, were basal in all trees, suggesting that bovids originated in Africa. Nodes connecting the remaining tribes were closely clustered, a pattern that agrees with fossil evidence of rapid divergence within the Bovidae in the mid-Miocene (about 15 mybp). The allozyme data suggested a second phase of rapid divergence within tribes during the Plio-Pleistocene, a pattern that also agrees with fossil evidence. Rates of bovid divergence have therefore been far from constant. However, the clustering of nodes imparts considerable uncertainty to the branching order leading to the derived tribes, and to a lesser extent, species within tribes. The classical division of the Bovidae into the Boodontia and Aegeodontia does not agree with the phylogenetic grouping of tribes presented in this analysis. However, the maximum parsimony tree derived using ‘local’ branch swapping clustered all grazing species into a derived, monophyletic group, suggesting that grazing may have evolved only once in bovid evolution.  相似文献   

5.
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.  相似文献   

6.
Six highly repeated DNA families were analyzed using Southern blotting and fluorescence in situ hybridization in a comparative study of 46 species of artiodactyls belonging to seven of the eight extant taxonomic families. Two of the repeats, the dispersed bovine-Pst family and the localized 1.715 component, were found to have the broadest taxonomic distributions, being present in all pecoran ruminants (Giraffidae, Cervidae, Antilocapridae, and Bovidae), indicating that these repeats may be 25–40 million years old. Different 1.715 restriction patterns were observed in different taxonomic families, indicating that independent concerted evolution events have homogenized different motifs in different lineages. The other four satellite arrays were restricted to the Bovini and sometimes to the related Boselaphini and Tragelaphini. Results reveal that among the two compound satellites studied, the two components of the 1.711a originated simultaneously, whereas the two components of the 1.711b originated at two different historical times, perhaps as many as 15 million years apart. Systematic conclusions support the monophyly of the infraorder Pecora, the monophyly of the subfamily Bovinae (containing the Boselaphini, Bovini, and Tragelaphini), an inability to resolve any interrelationships among the other tribes of bovids, paraphyly of the genus Bos with respect to Bison, and a lack of molecular variation among two morphologically and ecologically distinct subspecies of African buffaloes (Syncerus caffer cafer and S. c. nanus). Cytogenetically, a reduction in diploid chromosome numbers through centric fusion in derived karyotypes is accompanied by a loss of centromeric satellite DNA. The nilgai karyotype contains an apparent dicentric chromosome as evidenced by the sites of 1.715 hybridization. Telomeric sequences have been translocated to the centromeres without concomitant chromosomal rearrangement in Thompson's gazelle. Received: 18 June 1995 / Accepted: 1 September 1995  相似文献   

7.
Portions of the 12S and 16S mitochondrial ribosomal genes for 16 species representing nine tribes in the mammal family Bovidae were compared with six previously published orthologous sequences. Phylogenetic analysis of variable nucleotide positions under different constraints and weighting schemes revealed no robust groupings among tribes. Consensus trees support previous hypotheses of monophyly for four clades, including the traditional subfamily Bovinae. However, the basal diversification of bovid tribes, which was largely unresolved by morphological, immunodiffusion, allozyme, and protein sequence data, remains unresolved with the addition of DNA sequence data. The intractability of this systematic problem is consistent with a rapid radiation of the major bovid groups. Several analyses of our data show that monophyly of the Bovidae, which was weakly supported by previous morphological and molecular work, is questionable.  相似文献   

8.
着丝粒是真核染色体上的重要细胞器,是真核染色体作为基因载体行使其遗传功能的关键结构.着丝粒DNA首先是从酵母中分离克隆并被用以构建酵母人工染色体.鉴于真核有丝分裂机制研究和构建高等动物人工染色体研究的需要,从分离和检定过的小鼠着丝粒DNA库中筛选出了6#着丝粒DNA(SFADNA),并用荧光原位杂交法(FISH)对其进行了在染色体上的定位检定.用缺口平移法和PCR法分别标记了SFA DNA和SFA DNA中的小鼠寡份卫星DNA作为探针,分别与小鼠腹水癌细胞和小鼠L929细胞进行原位杂交;并用荧光抗体显示杂交信号的位置.结果,SFA DNA在两种细胞的中期染色体上的杂交信号都位于亚末端的初级缢痕处,表现为单一粗大的斑块.寡份卫星DNA在两种细胞的中期染色体上的杂交信号亦都位于亚末端的初级缢痕处,但极大多数的斑点均表现为成对的细小斑点.初级缢痕正是染色体着丝粒所在的特征性部位.故以上结果说明定位于该部位的克隆的6#SFA DNA,和其中的小鼠寡份卫星DNA都来源于小鼠着丝粒DNA.  相似文献   

9.
Repetitive DNA in the mammalian genome is a valuable record and marker for evolution, providing information about the order and driving forces related to evolutionary events. The evolutionarily young 1.709 satellite IV DNA family is present near the centromeres of many chromosomes in the Bovidae. Here, we isolated 1.709 satellite DNA sequences from five Bovidae species belonging to Bovini: Bos taurus (BTA, cattle), Bos indicus (BIN, zebu), Bubalus bubalis (BBU, water buffalo) and Tragelaphini tribes: Taurotragus oryx (TOR, eland) and Tragelaphus euryceros (TEU, bongo). Its presence in both tribes shows the sequence predates the evolutionary separation of the two tribes (more than 10 million years ago), and primary sequence shows increasing divergence with evolutionary distance. Genome organization (Southern hybridization) and physical distribution (in situ hybridization) revealed differences in the molecular organization of these satellite DNA sequences. The data suggest that the sequences on the sex chromosomes and the autosomes evolve as relatively independent groups, with the repetitive sequences suggesting that Bovini autosomes and the Tragelaphini sex chromosomes represent the more primitive chromosome forms.  相似文献   

10.
羚牛(Budorcas taxicolor)属偶蹄目(Artiodactyla)、牛科(Bovidae),为我国一类大型珍贵保护动物。我们从其基因组中克隆得到若干约800bp的BamHI高度重复序列并对部分克隆进行了序列测定,发现它们显示了很高的同源性。利用其中一个单元为探针,对限制酶消化后的羚牛基因组DNA作杂交分析,发现其杂交谱带不具有个体及亚种间特异性,说明该重复序列在羚牛基因组中具有保守的分布和排列。在牛科动物中,羚牛BamHI片段与绵羊属和山羊属的相关序列具有高度同源性,而与水牛和家牛序列差异较大。这些结果为羚牛与羊亚科物种亲源关系较近的分类学观点提供了分子生物学证据。有证据表明,这些片段可能代表羚牛染色体着丝点的卫星DNA单体。  相似文献   

11.
The family Bovidae is characterized by an incomplete fossil record for the period during which most bovid subfamilies emerged. This, coupled to extensive morphological convergence among species, has given rise to inconsistencies in taxonomic treatments, especially at the tribal and subfamilial levels. In an attempt to clarify some of these issues we analyzed the complete mtDNA cytochrome b gene (1140 bp) from 38 species/subspecies representing at least nine tribes and six subfamilies. Specific emphasis was placed on the evolution of the Alcelaphini (hartebeest and wildebeest), the Tragelaphini (kudu, eland, and close allies), the Antilopini (gazelles), and the Neotragini (dwarf antelope). Saturation plots for the codon positions revealed differences between bovid tribes and this allowed for the exclusion of transitional substitutions that were characterized by multiple hits. There was no significant rate heterogeneity between taxa. By calibrating genetic distance against the fossil record, a transversion-based sequence divergence of 0.22% (+/-0.015%) per million years is proposed for cytochrome b clock calibrations in the Bovidae. All evidence suggests that the Alcelaphini form a monophyletic group; there was no support for the recognition of the Lichtenstein's hartebeest in a separate genus (Sigmoceros), and the acceptance of the previously suggested Alcelaphus is recommended for this species. High bootstrap support was found for a sister taxon relationship between Alcelaphus and Damaliscus, a finding which is in good agreement with allozyme and morphological studies. In the case of the Tragelaphini, the molecular data suggest the inclusion of Taurotragus in the genus Tragelaphus, and no genetic support was found for the generic status of Boocercus. Although associations within the Antilopinae (comprising the tribes Neotragini and Antilopini) could not be unequivocally resolved, there was nonetheless convincing evidence of non-monophyly for the tribe Neotragini, with the Suni antelope (Neotragus moschatus) grouping as a sister taxon to the Impala (Aepyceros melampus, tribe indeterminate, sensu Gentry, 1992) and the Klipspringer (Oreotragus oreotragus) falling within the duiker antelope tribe (Cephalophini).  相似文献   

12.
By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.  相似文献   

13.
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C0t1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII‐DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.  相似文献   

14.
羚牛(Budorcas taxicolor)属偶蹄目(Artiodactyla)、牛科(Bovidae),为我国一类大型珍贵保护动物。我们从其基因组中克隆得到若干约800bp的BamHI高度重复序列并对部分克隆进行了序列测定,发现它们显示了很高的同源性。利用其中一个单元为探针,对限制酶消化后的羚牛基因组DNA作杂交分析,发现其杂交谱带不具有个体及亚种间特异性,说明该重复序列在羚牛基因组中具有保守的分布和排列。在牛科动物中,羚牛BamHI片段与绵羊属和山羊属的相关序列具有高度同源性,而与水牛和家牛序列差异较大。这些结果为羚牛与羊亚科物种亲源关系较近的分类学观点提供了分子生物学证据。有证据表明,这些片段可能代表羚牛染色体着丝点的卫星DNA单体。  相似文献   

15.
Due to their high sequence diversity even among closely related species, satellite DNA sequences can be a useful molecular marker for phylogenetic and taxonomic analyses. To characterize the satellite DNA in the genome of a native muntjac species of Taiwan, the Formosan muntjac, satellite DNA clones representing three different cervid satellite DNA families from this species were isolated and analyzed. Genomic organization study of these satellite DNAs was also undertaken. Three Formosan muntjac satellite DNA clones were obtained and designated as FM-satI (1,391 bp), FM-satII (1,143 bp) and FM-satIV (1,103 bp), and found to share approximately 82, 81 and 98% sequence homology with the Chinese muntjac satellite I clone (C5), Indian muntjac satellite II clone (Mmv-0.7) and Chinese muntjac satellite IV clone (MR-1.0), respectively. These three satellite DNA families are organized in a pter<--FM-satII-FM-satIV-FM-satI-->qter orientation in the centromeric region with satII closely associated with the telomeric sequences. Satellite DNA sequence comparison, in combination with chromosome data concludes that the Formosan muntjac is likely a subspecies of M. reevesi, closely related to the Chinese muntjac. With the kinetochore satellite II DNA co-localizing with the telomeric sequences, the Formosan muntjac chromosomes could be truly telocentric.  相似文献   

16.
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.  相似文献   

17.
着丝粒是真核染色体上的重要细胞器,是真核染色体作为基因载体行使其遗传功能的关键结构。着丝粒DNA首先是从酵母中分离克隆并被用以构建酵母人工染色体。鉴于真核有丝分裂机制研究和构建高等动物人工染色体研究的需要,从分离和检定过的小鼠着丝粒DNA库中筛选出6#着丝粒DNA(SAF DNA),并用荧光原位杂交法(FISH)对其进行了在染色体上的定位检定。用缺口平移法和PCR法分别标记了SFA DNA和SFA DNA中的小鼠寡份卫星DNA作为探针,分别与小鼠腹水癌细胞和小鼠929细胞进行原位杂交;并用荧光抗体显示杂交信号的位置。结果:SFA DNA在两种细胞的中期染色体上的杂交信号都位于亚末端的初级缢痕处,表现为单一粗大的斑块。寡份卫星DNA在两种细胞的中期染色体上的杂交信号亦都位于亚末端的初级缢痕处,但极大多数的斑点均表现为成对的细小斑点。初级缢痕正是染色体着丝粒所在的物征性部位。故以上结果说明定位于该部位的克隆的6#SFA DNA,和其中的小鼠寡份卫星DNA都来源于小鼠着丝粒DNA。  相似文献   

18.
Li YC  Lee C  Chang WS  Li SY  Lin CC 《Chromosoma》2002,111(3):176-183
In an attempt to amplify cervid satellite II DNA from the genomes of Indian muntjac and Chinese muntjac, a pair of primers derived from the white tailed deer satellite II DNA clone (OvDII) yielded a prominent approximately 1 kb polymerase chain reaction (PCR) product (in addition to the expected 0.7 kb satellite II DNA fragments) in both species. The approximately 1 kb products were cloned, sequenced, and analyzed by Southern blotting and fluorescence in situ hybridization (FISH). This revealed that the approximately 1 kb cloned sequences indeed represent a previously unknown cervid satellite DNA family, which is now designated as cervid satellite IV DNA. Approximately 1 kb PCR clones were also obtained from the genomes of the black tailed deer and Canadian woodland caribou with similar primer pairs. Extremely high sequence conservation (over 90% homology) was observed among the clones generated from all four deer species and PCR-Southern hybridization experiments further verified the co-amplification of two kinds of satellite DNA sequences with the same pair of primers. This satellite DNA was found to co-localize with centromeric proteins at the kinetochore by a simultaneous FISH and immunofluorescence study. Due to its high sequence conservation and close association with kinetochores, the newly identified satellite DNA may have a functional centromeric role.  相似文献   

19.
We have cloned and sequenced members of a family of satellite DNAs from three genera of the tilapiine tribe of fishes: Oreochromis, Sarotherodon, and Tilapia. The satellite DNAs, visualized as intensely staining bands following electrophoretic separation of EcoRI-digested genomic DNA, consist of three size variants differentially distributed in the various tilapiine species. The sizes of the monomers are approximately 237 bp (type I), 230 bp (type II), and 209 bp (type III). Several cloned monomers were sequenced from Oreochromis niloticus (type III), Oreochromis placidus (types I and II), Sarotherodon galilaeus (type I), Tilapia zillii (type I), and Tilapia rendalli (type I). Comparison of derived consensus sequences for the monomer units of the satellite DNAs revealed sequence identities within and between species that ranged from 89 to 96%. The type II and type III size variants appear to have arisen by deletions of 9 and 29 bp, respectively, within different regions of the type I satellite. Hybridization of a cloned monomer satellite from O. niloticus (type III) to PalI digests of genomic DNA from all three genera detected polymorphic, high molecular weight restriction fragments that produced fingerprint-like patterns. The complexity of these DNA fingerprints varied from one species to another, suggesting a markedly different genomic organization for these polymorphic satellite DNAs.  相似文献   

20.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号