首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S E Lang  F E Jenney  Jr    F Daldal 《Journal of bacteriology》1996,178(17):5279-5290
While searching for components of the soluble electron carrier (cytochrome c2)-independent photosynthetic (Ps) growth pathway in Rhodobacter capsulatus, a Ps- mutant (FJM13) was isolated from a Ps+ cytochrome c2-strain. This mutant could be complemented to Ps+ growth by cycA encoding the soluble cytochrome c2 but was unable to produce several c-type cytochromes. Only cytochrome c1 of the cytochrome bc1 complex was present in FJM13 cells grown on enriched medium, while cells grown on minimal medium contained at various levels all c-type cytochromes, including the membrane-bound electron carrier cytochrome cy. Complementation of FJM13 by a chromosomal library lacking cycA yielded a DNA fragment which also complemented a previously described Ps- mutant, MT113, known to lack all c-type cytochromes. Deletion and DNA sequence analyses revealed an open reading frame homologous to cycH, involved in cytochrome c biogenesis. The cycH gene product (CycH) is predicted to be a bipartite protein with membrane-associated amino-terminal (CycH1) and periplasmic carboxyl-terminal (CycH2) subdomains. Mutations eliminating CyCH drastically decrease the production or all known c-type cytochromes. However, mutations truncating only its CycH2 subdomain always produce cytochrome c1 and affect the presence of other cytochromes to different degrees in a growth medium-dependent manner. Thus, the subdomain CycH1 is sufficient for the proper maturation of cytochrome c1 which is the only known c-type cytochrome anchored to the cytoplasmic membrane by its carboxyl terminus, while CycH2 is required for efficient biogenesis of other c-type cytochromes. These findings demonstrate that the two subdomains of CycH play different roles in the biogenesis of topologically distinct c-type cytochromes and reconcile the apparently conflicting data previously obtained for other species.  相似文献   

2.
M C Liu  W J Payne  H D Peck  Jr    J LeGall 《Journal of bacteriology》1983,154(1):278-286
Pseudomonas perfectomarinus (ATCC 14405) is a facultative anaerobe capable of either oxygen respiration or anaerobic nitrate respiration, i.e., denitrification. A comparative study of the electron transfer components of cells revealed five c-type cytochromes and cytochrome cd in the soluble fraction from anaerobically grown cells and four c-type cytochromes in the soluble fraction from aerobically grown cells. Purification procedures yielded three c-type cytochromes (designated c-551, c-554, and acidic c-type) from both kinds of cells as indicated by similarities in absorption spectra, molecular weight, and electrophoretic mobility. Cytochrome cd, a diheme c-type cytochrome (cytochrome c-552), and a split-alpha c-type cytochrome were recovered only from anaerobically grown cells. A c-type cytochrome with a low ratio of alpha to beta absorption peak heights was uniquely present in the aerobically grown cells. Liquid N2 temperature absorption spectroscopy on the membrane fraction from anaerobically grown cells revealed residual cytochrome cd as well as differences in the relative amounts of c-type and b-type cytochromes in membranes prepared from cells grown under the two different conditions.  相似文献   

3.
Other investigators have isolated soluble, low-potential, c-type cytochromes (cytochrome c3) from a few photosynthetic procaryotes, i.e., a cyanobacterium and two species of purple nonsulfur bacteria. However, such cytochromes appeared to be absent from other purple bacteria, including Rhodospirillum rubrum and Chromatium vinosum. We now report evidence for the presence of low-potential c-type cytochromes in these two species, in which they were found to be bound to the photosynthetic membranes. Evidence for a membrane-bound, low-potential c-type cytochrome was also found in Rhodopseudomonas sphaeoides. The low-potential c-type cytochrome of R. rubrum was solubilized by a Triton X-100 treatment of chromatophores and was partly purified. It was found to have a molecular weight of about 17,000, a midpoint oxidation-reduction potential of -192 mV, and an alpha-absorption peak at 552 nm. It appears that low-potential c-type cytochromes may be present in all purple photosynthetic bacteria, of both the sulfur and the nonsulfur types.  相似文献   

4.
5.
A soluble cytochrome c and soluble cytochrome b were purified from the alkalophilic Bacillus firmus RAB. The cytochrome c, with an alpha band at 552 nm, had an apparent molecular weight of 16,500 and was acidic, with a pI of 3.4. At both pH 7.0 and 8.3, the midpoint potential of c-552 was +66 mV. Above pH 8.3, the cytochrome exhibited a pH-dependent decrease in midpoint potential. This property, among others, distinguished the cytochrome c-552 from other membrane-associated c-type cytochromes. The soluble cytochrome b, with an alpha band maximum at 558 nm, had a molecular weight of approx. 15,500 and was also an acidic protein, with a pI of 3.07. It exhibited a pH-independent midpoint potential of +28 mV.  相似文献   

6.
C Vargas  G Wu  A E Davies    J A Downie 《Journal of bacteriology》1994,176(13):4117-4123
A Tn5-induced mutant of Rhizobium leguminosarum bv. viciae could not form nitrogen-fixing nodules on pea or vetch because of a lesion in electron transport to oxygen. The mutant lacked spectroscopically detectable cytochromes c and aa3. No proteins containing c-type cytochrome could be identified in the mutant by heme staining of proteins fractionated on polyacrylamide gels, indicating that the mutant was defective in maturation of all c-type cytochromes. The Tn5 mutation was determined to be located in a gene that was called cycY. The cycY gene product is homologous to the thioredoxin-like protein HelX involved in the assembly of c-type cytochromes in Rhodobacter capsulatus and to an open reading frame from a Bradyrhizobium japonicum gene cluster containing other genes involved in cytochrome c biogenesis. Our observations are consistent with CycY functioning as a thioredoxin that reduces cysteine residues in apocytochromes c before heme attachment.  相似文献   

7.
Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells.  相似文献   

8.
The resonance Raman spectrum of turnip cytochrome f is similar to that of other c-type cytochromes with the exception of a single band at 1532 cm-1 which is shifted to lower frequency relative to its position (1542-1545 cm-1) in other c-type cytochromes. Comparison of the frequency of this band with that in alkylated cytochrome c at high pH suggests that the sixth heme iron ligand in cytochrome f is a deprotonated lysine amino group rather than a methionine sulfur. Comparison of the amino-acid sequences of cytochromes f and c1 suggests lysine-145 as a likely candidate for the sixth heme iron ligand in cytochrome f.  相似文献   

9.
We report the DNA sequence and mutational analysis of a novel cluster of six Bradyrhizobium japonicum genes of which at least three (designated cycV, cycW, and cycX) are essential for the formation of all cellular c-type cytochromes. Mutants having insertions in these genes were completely devoid of any soluble (periplasmic) or membrane-bound c-type cytochromes; even the apo form of cytochrome c1 was not detectable, neither in the membrane nor in the soluble fraction. As a consequence, the mutants had pleiotropic phenotypes such as defects in nitrate respiration, H2 oxidation, electron transport to cytochrome alpha alpha 3, and microaerobic respiration during symbiosis. A fourth open reading frame (ORF132) encoded a protein that might also be concerned with cytochrome c formation, but perhaps only indirectly. The other two open reading frames did not appear to function in this process. The predicted amino acid sequences of the cycW and cycX gene products suggested that these proteins were membrane-bound. The cycV gene product showed extensive similarity to the ATP-binding subunit of a superfamily of membrane-associated transport systems. The predicted ORF132 product was strikingly similar to bacterial thioredoxins and eukaryotic protein disulfide isomerase. Based on these findings it is possible that these proteins are members of a complex transport system involved in the biogenesis of all cytochromes c.  相似文献   

10.
The coordination geometry at the heme iron of the cytochromes c-553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans was investigated by 1H-nuclear magnetic resonance and circular dichroism spectroscopy. Individual assignments were obtained for heme c and the axial ligands. From studies of nuclear Overhauser enhancements the axial histidine imidazole ring orientation relative to the heme group was found to coincide with other c-type cytochromes. In contrast, a new structure was observed for the axial methionine in the reduced cytochromes c-553. This includes S chirality at the iron-bound sulfur atom, but compared to cytochromes c-551 from Pseudomonads and Rhodopseudomonas gelatinosa and cytochrome c5 from Pseudomonas mendocina, which also contain S-chiral methionine, a different spatial arrangement of the gamma- and beta-methylene groups and the alpha carbon of methionine prevails. For the ferricytochromes c-553 R chirality was found for the iron-bound sulfur. This is the first observation of different methionine chirality in different oxidation states of the same c-type cytochrome.  相似文献   

11.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

12.
Geobacter sulfurreducens contains a 9.6-kDa c-type cytochrome that was previously proposed to serve as an extracellular electron shuttle to insoluble Fe(III) oxides. However, when the cytochrome was added to washed-cell suspensions of G. sulfurreducens it did not enhance Fe(III) oxide reduction, whereas similar concentrations of the known electron shuttle, anthraquinone-2,6-disulfonate, greatly stimulated Fe(III) oxide reduction. Furthermore, analysis of the extracellular c-type cytochromes in cultures of G. sulfurreducens demonstrated that the dominant c-type cytochrome was not the 9.6-kDa cytochrome, but rather a 41-kDa cytochrome. These results and other considerations suggest that the 9.6-kDa cytochrome is not an important extracellular electron shuttle to Fe(III) oxides.  相似文献   

13.
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.  相似文献   

14.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c(552), is similar to a number of c-type cytochromes from the alpha-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c(552) revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

15.
Resonance Raman spectra were obtained for two newly isolated bacterial cytochromes, Alcaligenes faecalis (ATCC 8750) c554 and Alcaligenes faecalis c556. Their spectra were compared with those of mammalian cytochrome c and two other bacterial cytochromes, Paracoccus denitrificans c550 and Pseudomonas aeruginosa c551. The positions of the Raman bands indicated that, while Al. c554 and Al. c556 were c-type cytochromes with two thioether linkages, several common features found in their Raman spectra were anomalous. These features suggest that the electronic charge density of the porphyrin macrocycle of Al. c554 and Al. c556 is more asymmetric than that of other bacterial and mammalian c-type cytochromes. The Raman evidence indicates that the electronic properties of the heme are controlled by the protein in these two Alcaligenes cytochromes.  相似文献   

16.
In c-type cytochromes, heme is attached to the polypeptide via thioether linkages between vinyl groups on the tetrapyrrole ring and cysteine thiols in a CX(2)CH motif. To study the role of the heme-binding site in c-type cytochrome assembly and function, we generated amino acid changes in this region of Rhodobacter sphaeroides cytochrome c(2) ((15)Cys-Gln-Thr-Cys-His(19)). Amino acid substitutions at Cys(15), Cys(18), or His(19) produced mutant proteins that did not support growth via photosynthesis where this electron carrier is required. Many of these changes appeared to slow signal peptide removal, suggesting that heme attachment is coupled to processing of the c-type cytochrome precursor protein. Inserting an alanine between the cysteine ligands (CycA-Ins17A) did not significantly alter the behavior of this protein in vivo and in vitro, suggesting that the existence of 2 residues between cysteine thiols is not essential for heme attachment to a Class I c-type cytochrome like cytochrome c(2).  相似文献   

17.
1. Mitochondria-enriched fractions of the soil amoeba Acanthamoeba castellanii contained four haemoproteins that in their reduced forms reacted with CO to give photodissociable CO complexes; these were cytochromes a 3, a 614, b- and c-type cytochromes. 2. Non-photodissociable oxygen-containing compounds were formed at temperatures between -130 and -150 degrees C after photodissociation of CO in the presence of 200 microM-O2, 3. Electron transport, indicated by the oxidation of cytochromes a + a3 and cytochrome c, did not occur until the temperature was raised to -80 degrees C.  相似文献   

18.
Four soluble cytochromes of the c type were isolated from the freshwater dinoflagellate Peridinium cinctum collected from Lake Kinneret, Israel. Cytochrome c with alpha-band maximum at 550 nm in the reduced state had a molecular mass of 10,200 Da, pI 7.4, and Em of 278 m V. This cytochrome was active in the respiratory chain of beef heart Keilin-Hartree particles. Cytochrome c-553 had a molecular mass of 13,200 Da, pI 4.9, and Em of 384 m V, and was active in light induced electron transport of Euglena gracilis chloroplast fragments. Cytochrome c-554 had a molecular mass of 13,500 Da, pI 4.4, and Em of 326 m V. This cytochrome was inactive in light induced electron transport but competed with cytochrome c-552 of Euglena in the assay. The acidic cytochrome c-557 was present in very small quantities. The properties of the soluble c-type cytochromes of P. cinctum are compatible with the classification of dinoflagellates as primitive eucaryotes.  相似文献   

19.
Although structurally related to other members of the class I c-type cytochromes, the cytochromes c2 have little amino acid sequence homology to the eukaryotic cytochromes c. Moreover, the cytochromes c2 exhibit distinct properties such as redox potential and an isoelectric point. In an effort to understand the differences between the cytochromes c2 and the other class I c-type cytochromes, we have developed a genetic system to study Rhodobacter capsulatus cytochrome c2 by site-directed mutagenesis. We describe here overproduction of R. capsulatus wild-type cytochrome c2 in cytochrome c2-minus strains of R. capsulatus and Rhodobacter sphaeroides. We demonstrate that R. capsulatus wild-type cytochrome c2 can transcomplement for photosynthetic growth in R. sphaeroides. Further, we describe the generation, expression, and in vivo functionality properties of nine R. capsulatus site-directed mutants. We show that mutants K12D, K14E, K32E, K14E/K32E, P35A, W67Y, and Y75F are overproduced and functional in vivo. In contrast, mutants Y75C and Y75S are expressed at low levels and exhibit poor functionality in vivo. These findings establish an effective system for the production of R. capsulatus site-directed mutants and demonstrate that interspecies complementation can be used to detect defective cytochrome c2 mutants.  相似文献   

20.
The cytoplasmic membrane protein CcdA and its homologues in other species, such as DsbD of Escherichia coli, are thought to supply the reducing equivalents required for the biogenesis of c-type cytochromes that occurs in the periplasm of gram-negative bacteria. CcdA-null mutants of the facultative phototroph Rhodobacter capsulatus are unable to grow under photosynthetic conditions (Ps(-)) and do not produce any active cytochrome c oxidase (Nadi(-)) due to a pleiotropic cytochrome c deficiency. However, under photosynthetic or respiratory growth conditions, these mutants revert frequently to yield Ps(+) Nadi(+) colonies that produce c-type cytochromes despite the absence of CcdA. Complementation of a CcdA-null mutant for the Ps(+) growth phenotype was attempted by using a genomic library constructed with chromosomal DNA from a revertant. No complementation was observed, but plasmids that rescued a CcdA-null mutant for photosynthetic growth by homologous recombination were recovered. Analysis of one such plasmid revealed that the rescue ability was mediated by open reading frame 3149, encoding the dithiol:disulfide oxidoreductase DsbA. DNA sequence data revealed that the dsbA allele on the rescuing plasmid contained a frameshift mutation expected to produce a truncated, nonfunctional DsbA. Indeed, a dsbA ccdA double mutant was shown to be Ps(+) Nadi(+), establishing that in R. capsulatus the inactivation of dsbA suppresses the c-type cytochrome deficiency due to the absence of ccdA. Next, the ability of the wild-type dsbA allele to suppress the Ps(+) growth phenotype of the dsbA ccdA double mutant was exploited to isolate dsbA-independent ccdA revertants. Sequence analysis revealed that these revertants carried mutations in dsbB and that their Ps(+) phenotypes could be suppressed by the wild-type allele of dsbB. As with dsbA, a dsbB ccdA double mutant was also Ps(+) Nadi(+) and produced c-type cytochromes. Therefore, the absence of either DsbA or DsbB restores c-type cytochrome biogenesis in the absence of CcdA. Finally, it was also found that the DsbA-null and DsbB-null single mutants of R. capsulatus are Ps(+) and produce c-type cytochromes, unlike their E. coli counterparts, but are impaired for growth under respiratory conditions. This finding demonstrates that in R. capsulatus the dithiol:disulfide oxidoreductases DsbA and DsbB are not essential for cytochrome c biogenesis even though they are important for respiration under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号