首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
During vertebrate development, an organizing signaling center, the isthmic organizer, forms at the boundary between the midbrain and hindbrain. This organizer locally controls growth and patterning along the anteroposterior axis of the neural tube. On the basis of transplantation and ablation experiments in avian embryos, we show here that, in the caudal midbrain, a restricted dorsal domain of the isthmic organizer, that we call the isthmic node, is both necessary and sufficient for the formation and positioning of the roof plate, a signaling structure that marks the dorsal midline of the neural tube and that is involved in its dorsoventral patterning. This is unexpected because in other regions of the neural tube, the roof plate has been shown to form at the site of neural fold fusion, which is under the influence of epidermal ectoderm derived signals. In addition, the isthmic node contributes cells to both the midbrain and hindbrain roof plates, which are separated by a boundary that limits cell movements. We also provide evidence that mid/hindbrain roof plate formation involves homeogenetic mechanisms. Our observations indicate that the isthmic organizer orchestrates patterning along the anteroposterior and the dorsoventral axis.  相似文献   

3.
Sonic hedgehog (Shh) is a key signal in the specification of ventral cell identities along the length of the developing vertebrate neural tube. In the presumptive hindbrain and spinal cord, dorsal development is largely Shh independent. By contrast, we show that Shh is required for cyclin D1 expression and the subsequent growth of both ventral and dorsal regions of the diencephalon and midbrain in early somite-stage mouse embryos. We propose that a Shh-dependent signaling relay regulates proliferation and survival of dorsal cell populations in the diencephalon and midbrain. We present evidence that Fgf15 shows Shh-dependent expression in the diencephalon and may participate in this interaction, at least in part, by regulating the ability of dorsal neural precursors to respond to dorsally secreted Wnt mitogens.  相似文献   

4.
The complex, yet highly ordered and predictable, structure of the neural retina is one of the most conserved features of the vertebrate central nervous system. In all vertebrate classes, retinal neurons are organized into laminae with each neuronal class adopting specific morphologies and patterns of connectivity. Using genetic analyses in zebrafish, we demonstrate that N-cadherin (Ncad) has several distinct and crucial functions during the establishment of retinal organization. Although the location of cell division is disorganized in embryos with reduced or no Ncad function, different classes of retinal neurons are generated. However, these neurons fail to organize into correct laminae, most probably owing to compromised adhesion between retinal cells. In addition, amacrine cells exhibit exuberant and misdirected outgrowth of neurites that contributes to severe disorganization of the inner plexiform layer. Retinal ganglion cells also exhibit defects in process outgrowth, with axons exhibiting fasciculation defects and adopting incorrect ipsilateral trajectories. At least some of these defects are likely to be due to a failure to maintain compartment boundaries between eye, optic nerve and brain. Although in vitro studies have implicated Fgf receptors in modulating the axon outgrowth promoting properties of Ncad, most aspects of the Ncad mutant phenotype are not phenocopied by treatments that block Fgf receptor function.  相似文献   

5.
Retinoic acid (RA) has been identified as a key signal involved in the posteriorization of vertebrate neural ectoderm. The main biosynthetic enzyme responsible for RA signaling in the hindbrain and spinal cord is Raldh2. However, neckless/raldh2-mutant (nls) zebrafish exhibit only mild degrees of anteriorization in the neural ectoderm, compared to full vitamin A deficiency in amniotes and the Raldh2-/- mouse. Here we investigated the role of RA during neuronal development in the zebrafish hindbrain and anterior spinal cord using DEAB, an inhibitor of retinaldehyde dehydrogenases. We show that the nls hindbrain and spinal cord are not fully devoid of RA, since blocking Raldh-mediated RA signaling leads to a more severe hindbrain phenotype than in nls. The anteroposterior distribution of branchiomotor neurons in the facial and more posterior nuclei depends on full RA signaling throughout early and late gastrula stages. In contrast, inhibition of RA synthesis after gastrulation reduces the number of branchiomotor neurons in the vagal nucleus, but has no effect on anteroposterior cell fates. In addition, blockage of RA-mediated signaling not only interferes with the differentiation of branchiomotor neurons and their axons in the hindbrain, but also affects the development of the posterior lateral line nerve.  相似文献   

6.
7.
8.
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.  相似文献   

9.
The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.  相似文献   

10.
11.
12.
The previously described expression patterns of zebrafish and mouse Hoxa1 genes are seemingly very disparate, with mouse Hoxa1 expressed in the gastrula stage hindbrain and the orthologous zebrafish hoxa1a gene expressed in cell clusters within the ventral forebrain and midbrain. To investigate the evolution of Hox gene deployment within the vertebrate CNS, we have performed a comparative expression analysis of Hoxa1 orthologs in a range of vertebrate species, comprising representatives from the two major lineages of vertebrates (actinopterygians and sarcopterygians). We find that fore/midbrain expression of hoxa1a is conserved within the teleosts, as it is shared by the ostariophysan teleost zebrafish (Danio rerio) and the distantly related acanthopterygian teleost medaka (Oryzias latipes). Furthermore, we find that in addition to the described gastrula stage hindbrain expression of mouse Hoxa1, there is a previously unreported neurula stage expression domain, again located more anteriorly at the ventral fore/midbrain boundary. A two-phase expression profile in early hindbrain and later fore/midbrain is shared by the other tetrapod model organisms chick and Xenopus. We show that the anterior Hoxa1 expression domain is localized to the anterior terminus of the medial longitudinal fasciculus (MLF) in mouse, chick, and zebrafish. These findings suggest that anterior expression of Hoxa1 is a primitive characteristic that is shared by the two major vertebrate lineages. We conclude that Hox gene expression within the vertebrate CNS is not confined exclusively to the segmented hindbrain and spinal cord, but rather that a presumptive fore/midbrain expression domain arose early in vertebrate origins and has been conserved for at least 400 million years.  相似文献   

13.
Neuropilin (Nrp), a cell surface receptor for class 3 semaphorins and for certain heparin forms of vascular endothelial growth factors, functions in many biological processes including axon guidance, neural cell migration and angiogenesis in the development of the nervous system and the cardiovascular system. To understand the role of neuropilins in zebrafish embryogenesis, we have cloned three zebrafish neuropilin homologues, nrp1b, nrp2a and nrp2b. Based on synteny, zebrafish nrp1b and the previously cloned nrp1a are orthologous to human nrp1, and zebrafish nrp2a and 2b orthologous to human nrp2. We have characterized the expression patterns of these four zebrafish neuropilin genes in wild type embryos from the beginning of somitogenesis to 48 h post-fertilization. Zebrafish nrp1a is expressed in the neural tube including telencephalon, epithalamus, cells along the axonal trajectory of the posterior commissure and the medial longitudinal fascicle, hindbrain neurons, vagus motor neurons and spinal motoneurons. Zebrafish nrp1b is expressed in the nose, the cranial neural crest cell (NCC) derived tissue underlying the hypothalamus, endothelial precursors and the trunk and tail vasculature. Zebrafish nrp2a is expressed in telencephalon, anterior pituitary, oculomotor and trochlear motor neurons, cells along the supra-optic and posterior commissures, hindbrain rhombomere 1, hindbrain neurons, cranial NCCs and sclerotome. Zebrafish nrp2b is expressed in telencephalon, thalamus, hypothalamus, epiphysis, cells along the anterior and posterior commissures, post-optic and supra-optic commissures and the olfactory axonal trajectory, hindbrain neurons, cranial NCCs, somites and spinal cord neurons.  相似文献   

14.
Summary The evolutionary origin of vertebrate hindbrain segmentation is unclear since the amphioxus, the closest living invertebrate relative to the vertebrates, possesses a hindbrain homolog that displays no gross morphological segmentation. Three of the estrogen-receptor related (ERR) receptors are segmentally expressed in the zebrafish hindbrain, suggesting that their common ancestor was expressed in a similar, reiterated manner. We have also cloned and determined the developmental expression of the single homolog of the vertebrate ERR genes in the amphioxus (AmphiERR). This gene is also expressed in a segmented manner in a region considered homologous to the vertebrate hindbrain. In contrast to the expression of amphioxus islet (a LIM-homeobox gene that also labels motoneurons), AmphiERR expression persists longer in the hindbrain homolog and does not later extend to additional posterior cells. In addition, AmphiERR and one of its vertebrate homologs (ERRalpha) are expressed in the developing somitic musculature of amphioxus and zebrafish, respectively. Altogether, our results are consistent with fine structural evidence suggesting that the amphioxus hindbrain is segmented, and indicate that chordate ERR gene expression is a marker for both hindbrain and muscle segmentation. Furthermore, our data support an evolution model of chordate brain segmentation: originally, the program for anterior segmentation in the protochordate ancestors of the vertebrates resided in the developing axial mesoderm which imposed reiterated patterning on the adjacent neural tube; during early vertebrate evolution, this segmentation program was transferred to and controlled by the neural tube.  相似文献   

15.
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.  相似文献   

16.
17.
During vertebrate development, the hindbrain is transiently segmented into 7 distinct rhombomeres (r). Hindbrain segmentation takes place within the context of the complex morphogenesis required for neurulation, which in zebrafish involves a characteristic cross-midline division that distributes progenitor cells bilaterally in the forming neural tube. The Eph receptor tyrosine kinase EphA4 and the membrane-bound Ephrin (Efn) ligand EfnB2a, which are expressed in complementary segments in the early hindbrain, are required for rhombomere boundary formation. We showed previously that EphA4 promotes cell-cell affinity within r3 and r5, and proposed that preferential adhesion within rhombomeres contributes to boundary formation. Here we show that EfnB2a is similarly required in r4 for normal cell affinity and that EphA4 and EfnB2a regulate cell affinity independently within their respective rhombomeres. Live imaging of cell sorting in mosaic embryos shows that both proteins function during cross-midline cell divisions in the hindbrain neural keel. Consistent with this, mosaic EfnB2a over-expression causes widespread cell sorting and disrupts hindbrain organization, but only if induced at or before neural keel stage. We propose a model in which Eph and Efn-dependent cell affinity within rhombomeres serve to maintain rhombomere organization during the potentially disruptive process of teleost neurulation.  相似文献   

18.
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.  相似文献   

19.
The behaviour of neural progenitors in the intact vertebrate brain and spinal cord is poorly understood, chiefly because of the inaccessibility and poor optical qualities inherent in many model systems. To overcome these problems we have studied the optically superior brain of the zebrafish embryo and have monitored the in vivo behaviour of fluorescently labelled neural progenitors and their daughter cells throughout a substantial period of hindbrain development. We find the majority (84%) of hindbrain neurons are born from progenitor divisions that generate two neurons and 68% of reconstructed lineage trees contained no asymmetric stem cell-like divisions. No progenitors divided in the manner expected of a classic stem cell; i.e. one that repeatedly self-renews and generates a differentiated cell type by asymmetric division. We also analysed the orientation of progenitor divisions relative to the plane of the ventricular zone (VZ) and find that this does not correlate with the fate of the daughter cells. Our results suggest that in this vertebrate system the molecular determinants that control whether a cell will become a neuron are usually not linked to a mechanism that generates asymmetric divisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号