首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
In a previous study, we showed that the three hitherto serologically indistinguishable HLA-D specificities associated with HLA-DR4, HLA-DYT, HLA-DKT2, and HLA-Dw4 can be distinguished on the basis of their reactivity with two distinct la-like-specific monoclonal antibodies, HU-18 and HU-23. In this study, we attempted to identify and characterize Ia-like molecules recognized by HU-18 and HU-23 on a molecular level because la subsets (HLA-DR, MB, MT, or SB) identified by them remained unknown. The results of sequential coprecipitation assays and two-dimensional gel analyses showed that both HU-18 and HU-23 recognize antigenic determinants borne on M133 but not on HLA-DRw6.2 molecules. Because the two monoclonal antibodies, specific for determinants carried on MB3 molecules, show distinct reactivity against homozygous typing cells defining HLA-DYT, HLA-DKT2, and HLA-Dw4, all of which share DR4-MB3, the data indicate that these three HLA-D clusters associated with HLA-DR4 possess distinct MB3 molecules, suggesting the existence of polymorphism in MB3 antigens.  相似文献   

2.
Three cytotoxic monoclonal antibodies, HU-11, HU-32, and HU-33, specific for human Ia-like antigens were used to analyze the two HLA-DR2-associated HLA-D specificities, HLA-Dw2 and HLA-Dw12. In the HLA-Dw2, DR2, MB1 homozygous B-cell line EB-CMG, the binding of radiolabeled HU-32 and HU-33 was strongly inhibited by the addition of nonlabeled HU-11, whereas no inhibition occurred in the HLA-Dw12, DR2, MB1 homozygous B-cell line EB-KT. To confirm this differential inhibition pattern further, F(ab')2 fragments were prepared from HU-11, and their ability to inhibit complement-dependent lysis mediated by HU-32 and HU-33 was assessed against a total of five homozygous typing cell lines homozygous for HLA-Dw2, DR2, MB1 or HLA-Dw12, DR2, MB1, including EB-CMG and EB-KT. Here again, the same differential inhibition pattern as that observed in the radiobinding inhibition assays was obtained. Thus, the data suggest that the two kinds of HLA-DR2-positive homozygous typing cell lines with distinct HLA-D specificity can be distinguished from each other by using solely serologic methods. This is the first clear-cut serologic distinction made between homozygous typing cells defining HLA-Dw2 and those defining HLA-Dw12, since no serologic means that enables one to distinguish one from the other has been available.  相似文献   

3.
Differences in structure and function of HLA-class II molecules between HLA-DR4-related HLA-D specificities HLA-Dw4, Dw15, and DKT2 were investigated. Anti-HLA-DR framework monoclonal antibody HU-4 completely inhibited the one-way mixed lymphocyte reaction (MLR) between these specificities. HU-4 precipitated a monomorphic alpha-chain and a polymorphic beta-chain of human class II molecules from each B lymphoblastoid cell line (BLCL) homozygous for these three HLA-D specificities. We established IL 2-dependent T cell lines specific for streptococcal cell wall (SCW) antigen from peripheral blood lymphocytes (PBL) from four DR4-positive donors: an HLA-Dw4/DKT2 heterozygote, an HLA-Dw4/Dw12 heterozygote, an HLA-DKT2/D-blank heterozygote, and an HLA-Dw15/D-blank heterozygote. These T cell lines showed a proliferative response to SCW antigen in the presence of autologous or allogeneic antigen-presenting cells (APC) when T cell donors and APC donors shared at least one of the HLA-D specificities. This cooperation between the T cell line and APC was completely blocked by HU-4. We conclude from these data that the T cells could distinguish three distinct DR4 molecules expressed on APC of HLA-Dw4, Dw15, and DKT2 as restriction molecules at the presentation of SCW antigen.  相似文献   

4.
By using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we investigated the difference in the HLA class II molecule between HLA-Dw2 and Dw12, both of which are typed as HLA-DR2 serologically. The anti-HLA-DR framework monoclonal antibody (MoAb) HU-4 precipitated an alpha-chain and two beta-chains of human class II molecules from both Dw2 and Dw12 homozygous B lymphoblastoid cell lines. It was demonstrated clearly that an alpha-chain (alpha 1) and one of the beta-chains (beta 1) showed no difference in mobility in the 2D-PAGE between Dw2 and Dw12, but that another beta chain (beta 2) of Dw2 was distinct from that of Dw12 in the 2D-PAGE profile. Thus, MoAb HU-4 precipitated alpha 1 beta 1 and alpha 1 beta 2 molecules from Dw2 and Dw12, and the alpha 1 beta 1 molecule appears to be an HLA-DR2 molecule. The alpha 1 beta 2 molecule, on the other hand, is a class II molecule distinct from those precipitated with anti-DR2, anti-DQw1 (DC1, MB1, MT1), or anti-FA MoAbs. MoAb HU-4 completely inhibited the mixed lymphocyte culture reaction (MLR) between Dw2 and Dw12, but anti-DR2 MoAb HU-30, which reacts only with the alpha 1 beta 1 molecule, did not show an inhibitory effect on the MLR between Dw2 and Dw12. The alpha 1 beta 2 molecule is therefore the molecule which elicits MLR between Dw2 and Dw12. An IL 2-dependent T cell line established from an HLA-Dw12/D blank heterozygous high responder to the streptococcal cell wall antigen (SCW) clearly distinguished the Dw2 specificity from Dw12 specificity expressed on the antigen-presenting cell (APC). Moreover, MoAb HU-4 markedly inhibited the cooperation between the T cell line and APC to respond to SCW. These observations indicate that the alpha 1 beta 2 molecule is recognized as a restriction molecule by the T cell line at the antigen presentation of SCW through APC MoAb HU-30 on the other hand partially inhibited the MLR between Dw2 or Dw12 homozygous cell as a stimulator cell and non DR2 cell as a responder cell. It markedly inhibited the proliferative response of the Dw12/D- heterozygous T cell line to SCW, presented by Dw2+ but Dw12- allogeneic APC, and the peripheral response of Dw2 or Dw12 homozygous peripheral blood lymphocytes to SCW. Thus, two distinct class II molecules encoded by the genes within the HLA-DR subregion of HLA-Dw2 and Dw12 can act as stimulating molecules in the MLR and as restriction molecules in the antigen presentation by APC.  相似文献   

5.
HLA-DR molecules were isolated from eight different HLA-DR3 homozygous B-cell lines by immunoprecipitation with monoclonal antibodies, and they were subsequently analyzed by two-dimensional gel electrophoresis. We found that HLA-DR3 homozygous B-cell lines of consanguineous origin express two types of HLA-DR molecules. One type of HLA-DR molecule was present in all the cell lines tested, whereas the second DR molecule appears to be polymorphic. DNA isolated from the different HLA-DR3 homozygous cell lines was studied by Southern blot analysis to determine whether any DR restriction fragment length polymorphism could be observed. Polymorphisms detected at both the product and genomic level have been compared to each other, and their relations to the serological (HLA-DR) and cellular (HLA-D and LB-Q1) typing data will be discussed.No reprints available  相似文献   

6.
With reference sera and homozygous typing cells (HTCs) of 3rd Asia-Oceania Histocompatibility Workshop Conference, 56 healthy unrelated subjects in Shanghai were typed for HLA-A, B, C, DR, DQ, and Dw. This paper presents the results of HLA-Dw typing, its relationship to serological class II antigens, and the distribution of Dw in the population. The polymorphism patterns of Chinese Dw specificities were quite different from those in Caucasoids and Japanese. The predominant Dw phenotypes detected in Shanghai Chinese were Dw 2, Dw 3, DKT 2, Dw 7 c, (Dw7 + Dw 17) and Dw 23 (DB 5). And significant correlations were observed between Dw 1 and DR 1, Dw 2 and DR 2, Dw 3 and DR 3, Dw 7 c and DR 7, DB 7 and DRw 8, as well as Dw 23 and DR 9. SMY 129, a novel Dw specificity defined by local HTCs and co-studied by the laboratories joined for Dw typing in 3rd AOHWC showed its correlation with DR 5. Nevertheless, more than fifty percent of Dw specificities could not be assigned in the four correspondent designated serological antigens, DR 2, DR 5, DRw 8 and DR 9, respectively, which, together with other blank Dw specificities, gave a total blank Dw gene frequency as high as 43.2% in the population. It was suggested by further analysis that novel Dw specificities might be identified more effectively if efforts would be concentrated on DR 5 and DR 9, two antigen families which, in some way, might represent the characteristics of HLA system in Chinese. Besides, certain HTC-defined antigens, e.g. Dw 3 and the DR 4-related Dw specificities, have been revealed to be in linkage disequilibrium with other DR antigens in addition with the correspondent designated ones, resulting in some unique haplotype combinations in Shanghai Chinese. It seems to us that the particular patterns of polymorphisms of serum- and cell-defined HLA class II antigens would be helpful to elucidate the mechanisms by which certain diseases are in association with HLA in Chinese in a different manner as compared with that in Caucasoids.  相似文献   

7.
Among cells that bear the serologically defined Ia alloantigen DR7, four T cell-defined HLA-D specificities have been described: Dw7, Dw17, Dw11, and Dw7L. Ia molecules expressed by cells homozygous for these specificities have been compared by using immunofluorescence and two-dimensional gel electrophoresis in order to identify the DR and DQ polymorphisms among the family of DR7-associated HLA-D specificities. Cells homozygous for each of the four HLA-D specificities have in common one DR molecule that is indistinguishable by these methods. Two DR-specific monoclonal antibodies, IIIE3 and 109d6, detect a second distinct DR molecule on Dw7, Dw17, and Dw7L cells. This second DR molecule is also very similar from cells of the three specificities. In contrast, a second DR molecule was not detected on four Dw11 homozygous cells. Therefore, these data raise the possibility that all DR homozygous cells do not express the same number of DR molecules. The DQ molecules expressed by DQw2-positive Dw7, Dw17, and Dw7L cells are also very similar, whereas DQw3-positive Dw11 DQ molecules are structurally different. Therefore, no DR or DQ structural polymorphisms were detected to correlate with the Dw7, Dw17, and Dw7L T cell-defined Ia polymorphisms.  相似文献   

8.
A monoclonal antibody (mAb) with a novel human B-cell allospecificity was produced by immunizing a C3H/He mouse with the human B lymphoblastoid cell line EBV-Wa (HLA-DR4/Dw15/DQblank homozygous). The mAb, termed HU-46, reacted with B cells from not only DR4/Dw15-positive individuals but also certain DRw8/Dw8-positive ones whose DQ phenotypes had not yet been defined. Two-dimensional gel analyses indicated that the mAb recognized class II antigens which were encoded by the HLA-DQ locus. Furthermore, in genetic analysis, the gene encoding the class II antigen detected by HU-46 met the Hardy-Weinberg condition as a fourth allele of the DQ locus. We provisionally labeled this novel DQ specificity DQWa.  相似文献   

9.
Insulin-dependent diabetes is generally associated with the serologic HLA-DR specificities 3 and 4, in particular with DR-3,4 heterozygosity. The disease is negatively associated with DR-2. To investigate these associations further at the genomic level, DNA from 13 families with a proband having insulin-dependent diabetes, from 11 other individuals with the same disease, and from HLA-DR-matched control individuals was subjected to restriction fragment analysis. Three different enzymes (Bam HI, Eco RI, and Pvu II) and cDNA clones for three HLA-D region class II antigen alpha- and beta-chains (DR-beta, DQ-beta, and DQ-alpha) were used. In six families, a total of 11 siblings HLA-DR-identical to the proband were examined. There was no discrepancy between the hybridization patterns of the proband and those of the DR-identical siblings. Two different DQ-B fragment patterns were detected with each one of the serologic specificities DR-2 and DR-4. In both cases, only one of the patterns correlated significantly with diabetes. Thus, DQ-beta genomic hybridization may be used in conjunction with HLA-DR typing to identify individuals with higher relative risk to acquire insulin-dependent diabetes. These results may suggest that insulin-dependent diabetes is associated with the DQ rather than with the DR locus.  相似文献   

10.
The supertypic HLA-DRw53 specificity is associated with three allelic class II specificities defined by alloantisera: HLA-DR4, -DR7, and DRw9. The present study demonstrates the complexity of this supertypic DR specificity by comparing two DRw53-related determinants defined by the monoclonal antibodies PL3 and 109d6. For every HLA-DR4 cell line tested, both monoclonal antibodies were found to bind to the same subpopulation of DR molecules. This PL3+, 109d6+ DR subpopulation is also found on most, but not all, DR7+ cell lines with a beta-chain pattern that is identical to the beta-chain pattern of the PL3+, 109d6+ subpopulation on DR4 cell lines. However, some DR7+ cells which carry the HLA haplotype Bw57, DR7, DRw53, DQw3 were also found which completely lack the expression of the 109d6 determinant, but continue to express the PL3 determinant and some of the DRw53 determinants recognized by alloantisera. This results from the fact that the PL3 determinant is expressed on all of the DR molecules found on DR7 cells, including the distinct subpopulation of molecules that carry the HLA-DR7 determinant recognized by the monoclonal antibody SFR16-DR7. This PL3+, SFR16-DR7+ subpopulation does not carry the 109d6 determinant, demonstrating that the PL3 and 109d6 DRw53-related determinants are distinct and can be expressed on a different number of DR molecules, depending on the allotype of the cells. Blocking studies were also performed by using these monoclonal antibodies with alloreactive HLA-DR7-specific cytotoxic T cell clones. In these studies, the T cell-defined HLA-DR7 determinants were found to be carried by the same subpopulation of DR molecules recognized by the HLA-DR7-specific monoclonal antibody and not carried by the DR molecules recognized by 109d6. The DR7+ cell lines which do not express the 109d6 determinant also fail to express another supertypic determinant recognized by the monoclonal antibody IIIE3 carried on this molecule. Furthermore, no additional allelic forms of this unique DR beta-chain were found associated with the nonpolymorphic DR alpha-chain on these cells, suggesting that this DR beta-chain gene is not expressed. These cells also behave as homozygous typing cells for the Dw11 subtype of DR7 in HLA-D typing in the mixed lymphocyte culture assay. This suggests that the lack of expression of a specific class II gene may contribute additional genetic polymorphism within the known HLA-DR allotypes.  相似文献   

11.
HLA-DR4-associated haplotypes are genotypically diverse within HLA   总被引:2,自引:0,他引:2  
Biochemical diversity among products of class II HLA genes has been observed in individuals who appear to be HLA-D and DR-identical by cellular and serologic typing. We used techniques of restriction enzyme fragment analysis by Southern blotting to analyze this diversity at the level of cellular DNA. A panel of 17 HLA-DR4 homozygous cell lines (HCL) were investigated by using cDNA probes homologous to DQ beta, DQ alpha, and DR beta genes. Each probe was hybridized to cellular DNA digested with a series of different restriction endonucleases. Polymorphisms were observed with the use of the enzymes Pst I, Hind III, and Bam HI: Hybridization of cellular DNA digested with Hind III and Pst I with the DQ beta probe revealed specific polymorphisms, as did hybridization of the Pst I digest with the DQ alpha cDNA probe and the Bam HI digest with the DR beta probe. The observed differences fall into two categories: first, considerable diversity was seen between HLA-DR4 HCL that represent different HLA-D-defined haplotypes; second, diversity was also observed among HCL of the same DR4-associated HLA-D cluster. In contrast to the DQ cDNA probes, hybridization with the DR beta probe revealed relatively limited polymorphism by using a panel of different restriction endonucleases. Thus, although there is a general pattern of polymorphic restriction enzyme fragments homologous to DQ probes within an HLA-D cluster, the pattern seen for any particular cell line was not sufficiently distinct to assign an HLA-D or DR specificity.  相似文献   

12.
We studied the polymorphisms of HLA-DR and HLA-DQ products from HLA-DRw13 haplotypes by analyzing the restriction of influenza A-specific cloned T cells from an HLA-DRw13,DQw1,Dw19 homozygous individual. The results show that (1) some functional epitopes, which can be borne by either HLA-DR or HLA-DQ molecules, are strictly correlated with the HLA-Dw19 subtype of HLA-DRw13. This clearly indicates that both HLA-DR and HLA-DQ products contribute to the HLA-Dw19 subdivision of HLA-DRw13. (2) At least two different restricting epitopes are borne by DR products: one is correlated with the HLA-DRwl3 serologically defined specificity, which includes Dw19 and Dw18 haplotypes; the other is correlated with the only HLA-Dw19 subtype of HLA-DRwl3. (3) Restricting epitopes borne by DQ molecules have been found on Dw19 cells only. (4) DQ-restricted clones were unable to react with DQwl APC of any other haplotypes tested, including DR1, DR2-long, DR2-short, and DRw14, demonstrating a high degree of functional polymorphism among the serologically defined DQw1 specificities.Abbreviations used in this paper: APC antigen-presenting cells - cpm count per minute - HAU hemagglutinin units - IL-2 interleukin 2 - MHC major histocompatibility complex - mAb monoclonal antibody - PBM peripheral blood mononuclear cells - PHA phytohemagglutinin - pl isoelectric point - PMA phorbol myristic acetate - SD standard deviation  相似文献   

13.
The monoclonal antibodies (MoAb) CR10-214, CR11-115, and Q1/28 to distinct monomorphic determinants of HLA class I antigens, the MoAb CL413 and PTF29.12 recognizing monomorphic determinants of HLA-DR antigens, the anti-HLA-DQw1 MoAb KS11, the anti-HLA-DPw1 MoAb B7/21, and the anti-HLA-DR,DP MoAb CR11-462 were tested for their ability to modulate human B-lymphocyte proliferation and maturation to IgM-forming cells. Purified tonsillar B cells were stimulated with Staphylococcus aureus bacteria of the Cowan first strain (SAC) or anti-human mu-chain xenoantibodies, as well as in growth factor- or T-cell-dependent activation cultures. The B-cell proliferative responses induced by SAC or by mitogenic concentrations of anti-mu-chain xenoantibodies were inhibited by some of the anti-HLA class I and anti-HLA class II monoclonal antibodies tested. The same antibodies were effective inhibitors of the proliferation of B cells stimulated with interferon-gamma (IFN-gamma) or interleukin-2 (IL-2) and with submitogenic concentrations of anti-mu-chain xenoantibodies. The proliferation induced by IL-2 of SAC-preactivated B cells was inhibited by some of the anti-HLA class II monoclonal antibodies, but not by the anti-HLA class I monoclonal antibodies tested. This inhibition appeared to reflect at least in part a direct effect on later events of the B-cell activation cascade, since some anti-HLA class II monoclonal antibodies still exerted considerable inhibitory activity when added together with IL-2 to SAC-preactivated B cells after the third day of culture. Anti HLA-DR, DQ, and DP monoclonal antibodies consistently inhibited the IgM production induced in B cells by T cells alone, T cells plus pokeweed mitogen (PWM), SAC plus IL-2, or IL-2 alone. In contrast, two of the three anti-HLA class I monoclonal antibodies tested inhibited the IgM production in cultures stimulated with SAC plus IL-2 and one the IgM production induced by IL-2 alone, but none of them had inhibitory effects on T-cell dependent IgM production. The results reported herein indicate that HLA class II molecules directly participate in different phases of the B-cell activation cascade. In addition, our data also suggest that HLA class I molecules can be involved in the events leading to B-cell proliferation and differentiation into immunoglobulin-secreting cells.  相似文献   

14.
Locally produced antisera and antisera received through the Seventh International Histocompatibility Workshop exchange were investigated for specific B-cell cytotoxic activity in a panel of 95 unrelated HLA-D-typed donors. A number of sera formed clusters defining eight B-cell specificities which were strongly associated (p<0.001) to the HLA-D determinants Dw1–8. In panel investigations, only four triplets occurred. In five HLA recombinant families, these B-cell specificities followed the HLA-B-D chromosomal region, and in one —B/D recombination, DRw1 traveled with —Dw1. In MLCs between panel donors sharing zero, one, or two HLA-D-related B-cell specificities, significantly weaker MLC stimulation was observed with increasing compatibility, the median relative responses being 100, 52, and 17 percent, respectively. It is concluded that B cell-specificities HLA-DRw1–7 and WIA8 are probably coded for by HLA-D; they are excellent markers for the HLA-D determinants, which can thus be typed for by serological means; and serological typing for HLA-D has great value in predicting the outcome of MLCs.  相似文献   

15.
In the present report we studied the phenotype of peripheral blood mononuclear cells (PBMC) from 25 patients with B-cell chronic lymphocytic leukemia (CLL). Cells from all the cases expressed monoclonal surface immunoglobulins (SmIg), formed rosettes with mouse erythrocytes (MRFC) and were positive with OKB 2 and OKIa monoclonal antibodies. In addition, CCB 1 monoclonal antibody was positive in 17 out of 20, Leu-1 in 18 out of 21 and Leu-8 in 23 out of 25 cases. Double labelling experiments confirmed that the Leu-8 antigen was co-expressed on Leu-1+, CCB2+, HLA-DR+ B-CLL cells. Thus, B-CLL cells generally express the SmIg+, MRFC+, Leu-1+, OKB2+, Leu-8+ phenotype. Since it is known that normal peripheral blood B cells may be divided into two subpopulations according to Leu-8 expression, our data indicate that B-CLL cells originate from the more immature Leu-8+ B-cell subset which will respond to anti-IgM, whereas it reacts poorly to pokeweed mitogen.  相似文献   

16.
Human Ia-like, class II molecules were isolated by immunoprecipitation with monoclonal antibodies from various HLA-D/DR homozygous cell lines and were analyzed by two-dimensional gel electrophoresis. The monoclonal antibody PLM12 reacted with B cells carrying DR4, DR5, DRw6.2, and DRw9 phenotypes, and its reactivity perfectly correlated with the previously defined TB21 (MB3-like) specificity. Class II molecules detected by PLM12 were structurally distinct from those precipitated by the anti-DR monoclonal antibody NC1 on all HLA-DR4, DR5, DRw6.2, and DRw9 homozygous cell lines and showed polymorphism in heavy and light chains among these cell lines. The monoclonal antibodies PLM2 and PLM9 only reacted with B cells carrying DR5 and DRw6.2 and also detected a distinct set of class II molecules from those precipitated by NC1 but identical to those of PLM12. Thus, PLM2 and PLM9 serologically detected a new subtypic antigen of the PLM12-reactive class II molecules. Furthermore, the antibody NC1 precipitated two light chains and one heavy chain from HLA-DRw6.2 homozygous cell line EBV-Sh. The result indicated the presence of three sets of class II molecules: two in a DR family and another carrying the polymorphic determinants detected by PLM2, PLM9, and PLM12 in a second family.  相似文献   

17.
We have used seven HLA-D homozygous typing cells (HTC) in a comparative study of the DRw8 antigen complex in three racial groups. Three distinct HLA-D specificities were recognized, each associated with HLA-DRw8. Four of the HTC defined a DRw8-associated HLA-D specificity designated 8.1, one defined a specificity designated 8.2, and two defined a specificity designated 8.3. Each of the three specificities showed an association with a distinct racial group: Dw"8.1" in Caucasians, Dw"8.2" in Pacific Northwest Indians, and Dw"8.3" in Orientals. An informative primed lymphocyte (PLT) cell generated against a Dw"8.1" haplotype was able to distinguish 8.1 from 8.2 and 8.3. Using selected anti-DRw8 sera, a serologic distinction between 8.1 and 8.3 could also be made. It was thus possible, by using both cellular and serologic techniques in a comparative population study, to recognize at least three HLA-D-defined splits of the DRw8 haplotype.  相似文献   

18.
A monoclonal antibody, MHM4, identified a cell surface antigen present on B cells and not resting T cells. It precipitated two polypeptide chains of 34 000 and 28 000 daltons from B lymphoblastoid cells. This antibody bound to all B-cell lines tested, except those homozygous for HLA-DR7. Saturation binding assays and Scatchard plots of MHM4 binding to cells that did not carry HLA-DR7 indicated that this antibody bound less than the total surface Ia antigen. When the antibody was competed with eight other HLA-D-specific antibodies, the epitope recognized was shown to be distinct. Two-dimensional gel analysis revealed that a simple pattern of spots was precipitated, unlike the complex patterns obtained with other HLA-D-specific antibodies. The α and β spots were different from those precipitated by HLA-DR- or DC-specific antibodies. It is argued that the MHM4 antigen is the product of an HLA locus that is distinct from HLA-DR and DC. Its relationship with HLA-SI3 is discussed.  相似文献   

19.
A patient presenting with a syndrome probably due to immune complex deposition was investigated and found to possess an inherited C2 complement deficiency. Family studies indicated that the deficiency was transmitted as an autosomal recessive trait. HLA typing for the HLA-A and HLA-B specificities and HLA-D specificities indicated a close linkage between the HLA and C2 genes, as has been described elsewhere. The HLA-A and B locus specificities HLA-AW25 and HLA-B18 were coded for by each of the two chromosomes carrying the C2(0) gene. However, the two chromosomes differed at the HLA-D locus, as one coded for HLA-DW2 whilst the other did not. This case, therefore, provides a unique haplotype and may be of importance in mapping the C2(0) locus, as it suggests that the gene order on chromosome 6 is HLA-D, C2(0), HLA-B, HLA-A. Extensive complement component assays indicated that utilization of complement in the patient was occurring via the alternate complement pathway. It is suggested that, as a result of the C2 deficiency, infections with viruses and other agents could lead to an immune complex disease due to an impaired capacity to effectively eliminate circulating complexes.  相似文献   

20.
中国人HLA纯合细胞的筛选及纯合性鉴定   总被引:2,自引:0,他引:2  
本文报告了我们实验室在中国人中筛选HLA纯合子的方法和筛选流程。用HLA血清学分型法,从上海129个近亲婚配家庭中筛选到HLA-AB纯合子23个(分布于17个家庭)。其中19个HLA-AB纯合子(分布于14个家庭)进一步做了家系MLC棋盘。最终证明,它们中14个细胞(分布于10个家庭)的HLA-D位点也纯合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号