首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to alter the filamentous morphology of Penicillium chrysogenum cells, a technique was developed to confine the growth of the mycelia to porous celite beads. The pore matrix of these beads was found to be very effective for entrapping mycelial cells and spores. The entrapped spores were used to initiate the fermentations in shake flask cultures. Significant increases in final cell densities were obtained in the confined cell cultures reaching up to 60 g/L cells. This is nearly double the cell concentration attainable in free cell cultures grown in the absence of beads. Cell loadings up to 0.55 g cells per bead were obtained in the confined cell cultures. In the later stages of the fermentations, the specific oxygen uptake rates in the confined cell cultures were found to decrease with respect to free cell cultures.  相似文献   

2.
Beet hairy root cultures established from red and yellow varieties were grown in a 2 L bubble column reactor. The yellow clone showed profuse root hairs and a predominance of betaxanthin pigment with the red clone showed fewer root hairs and both betaxanthin and betacyanin pigments. The cultures displayed different ionic and sugar yields: 2.1 mg dry wt / mS.mL and 0.361 g dry wt / g sugar for the yellow clone and 2.3 mg dry wt / mS.mL and 0.375 g dry wt / g sugar for the red one. Both cultures grew at the same specific growth rate of 0.22 d-1in the bubble column, as compared to 0.32 d-1in shake flasks, indicating mass transfer limitations for growth in reactors.  相似文献   

3.
Conidia of Penicillium chrysogenum were immobilized in K-carrageenan beads and then incubated in a growth-supporting medium to yield a penicillin producing immobilized cell mass. These in situ grown immobilized cells were used for the semicontinuous (replacement cultures)and continuous (fluidized bioreactor culture) production of penicillin-G. When periodically replaced into a minimal production medium, immobilized cells exhibited a half-life for penicillin production which was ninefold greater than that exhibited by free cells. The half-life of penicillin production and the yield of penicillin from glucose in such a replacement culture were greatly affected by the frequency of replacement and by the production medium's pH and concentration of glucose, phosphate, and trace metal nutrients. A penicillin-producing continuous flow bioreactor (150 mL), employing immobilized cells, was operated for up to 16 days. The best specific penicillin productivity (1.2 mg/g cells/h)yield from glucose (7.0 mg/g glucose) and half-life of production (15 days) were obtained when the feed medium contained 10 g/L of glucose, the pH was maintained at 7.0, the relative dissolved oxygen concentration was ca. 40%; and the residence time was 20 h.  相似文献   

4.
Summary Plant hairy root cultures of Lithospermum erythrorhizon were carried out to produce shikonin derivatives by employing in situ extraction with n-hexadecane in a shake flask and a bubble column bioreactor. Over 95 % shikonin produced was recovered in the n-hexadecane layer. In flask cultures the maximum concentration of shikonin with n-hexadecane extraction was 3 times higher than that obtained without extraction. In the two phase bubble column reactor, 572.6 mg/L of shikonin and 15.6 g/L of dry cell mass were obtained after 54 days. Shikonin was produced at a constant level of 10.6 mg/L day during this period.  相似文献   

5.
Summary A high penicillin-producing Penicillium chrysogenum strain immobilized in calcium alginate beads was used for continuous penicillin fermentation in a bubble column and in a conical bubble fermentor. The fermentation was limited by the growth rate, dilution rates and the stability of the alginate beads. The immobilized cells lost their ability to produce penicillin in the bubble column after 48 h from beginning of the continuous fermentation. In the conical bubble fermentor the immobilized cells remained active for more than 7 days. This bioreactor ensured a good distribution of nutrients and oxygen as well as a higher mechanical stability of the alginate beads.  相似文献   

6.
Hairy root cultures from red beet (Beta vulgaris L.), which could be used for the commercial production of biologically active betalain pigments, were cultivated in a 3 L bubble column bioreactor in batch mode with various rates of air supply. Both the growth of the roots and betalain volumetric yields were highest (12.7 g accumulated dry biomass/L and 330.5 mg/ L, respectively) with a 10 L/h (0.083 vvm) air supply. The air flow rate also influenced the betacyanins/betaxanthins ratios in the cultures. Growth and betalains production were then examined in two fed-batch regimes (with a 10 L/h air supply), in which nutrient medium was fed just once or on five occasions, designated FBI and FBII, respectively. The root mass accumulation was increased in the FBI feeding regime (to 13.3 g accumulated dry biomass/ L), while in FBII the betalains content was ca. 11% higher (15.1 mg betacyanins/g dry weight and 14.0 mg betaxanthins/g dry weight) than in the most productive batch regime. Data on the time course of the utilization of major components in the medium during both operational modes were also collected. The implications of the information acquired are discussed, and the performance of the hairy roots (in terms of both growth and betalains production) in the bubble column reactor and previously investigated cultivation systems is compared.  相似文献   

7.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

8.
Liquid-phase mass transfer coefficients in bioreactors   总被引:4,自引:0,他引:4  
Liquid-phase mass transfer coefficient in bioreactors have been examined. A theoretical model based on the surface renewal concept has been devloped. The predicted liquid-phase mass transfer coefficients are compared with the experimental data for a mycelial fermentation broth (Chaetomium cellulolyticum) and model media (carboxymethyl cellulose) in a bench-scale bubble column reactor. The liquid-phase mass transfer coefficient is evaluated by dividing the volumetric mass transfer coefficient obtained experimentally by the specific surface area estimated using the available correlations. The available literature data in bubble column and stirred tank bioreactors is also used to test the validity of the proposed model. A reasonable agreement between the model and the experimental data is found.  相似文献   

9.
Hairy root cultures of Artemisia annua L were cultivated in four different culture systems: a flask, a bubble column, a modified bubble column and a modified inner-loop airlift bioreactor. The artemisinin contents of hairy root cultures in the bubble column and the modified inner-loop airlift bioreactor were higher than that in the modified bubble column. The growth rate and hairy root distribution in the modified inner-loop airlift bioreactor were better than those in other bioreactors, and dry weight and artemisinin production reached to 26.8 g/L and 536 mg/L after 20 days.  相似文献   

10.
Summary Conidia of Aspergillus oryzae were immobilized in Ca-alginate beads and then incubated in a nutrient medium to yield an immobilized biocatalyst producing kojic acid. The immobilized cell cultures produced kojic acid linearly during cultivation. Regardless of the size of the immobilized particles, there existed an optimal nitrogen concentration for the maximum production rate of kojic acid, at which smaller bead sizes resulted in a higher production rate. When the growth of mycelia were confined within the bead surface and segregated from each other by gel material, they produced kojic acid with maximal catalytic activity and exhibited the highest conversion yield of glucose. The extent of mycelial segregation was especially higher in cultures of smaller bead particles, and the depth of mycelial growth was 150 to 250 m from the gel bead surface in all cultures of different nitrogen concentrations and bead sizes. Therefore, for the maximum expression of catalytic activities of immobilized mycelial cultures, it was found very critical to optimally control the mycelial distribution in gel beads by the culture conditions affecting mycelial growth.  相似文献   

11.
The dependence of filamentous fungal protease secretion on morphology was investigated by employing the recombinant Aspergillus niger strain AB4.1[pgpdAGLAGFP] which contains a gene for the glucoamylase-GFP (green fluorescence protein) fusion protein. Different inoculum levels were used to obtain different sizes of pellet or free mycelia. The extracellular protease activity of the cultures varied with the pellet size and decreased dramatically when the morphology was changed from free mycelia to pellets. The culture with an optimal pellet size of 1.6 mm was obtained from an inoculum of 4 x 10(6) spores/mL. It resulted in a specific protease activity of 158 units/L, only one-third of that in free mycelial growth, and a maximum specific GFP yield of 0.98 mg/g (cell mass) compared to 0. 29 mg/g for free mycelial growth with an inoculum of 10(7) spores/mL. The results indicate that this bioprocessing strategy can be effectively used to inhibit protease activity in filamentous fungal fermentation and thereby to enhance heterologous protein production.  相似文献   

12.
The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.  相似文献   

13.
Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.  相似文献   

14.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

15.
L(+)-Lactic acid production was enhanced in the culture of Rhizopus oryzae using mycelial flocs formed by addition of 3 g/L mineral support and 5 ppm polyethylene oxide. By addition of the mineral support, an electrostatic repulsion between mycelia increased by 3.5-fold compared to that of mycelia, which allowed a dispersed growth of R. oryzae in the early growth phase. In conventional culture the morphology of R. oryzae is that of a pellet-like cake, however, when support and polyethylene oxide are added to the culture, the morphology of R. oryzae takes on a cotton-like appearance. The formation of these cotton-like mycelial flocs was induced by the addition of 5 ppm polyethylene oxide into a 14 h culture containing the mineral support before the formation of the conventional pellet morphology. The cotton-like flocs were also formed in cultures grown in a fermentor. This morphology allowed effective mass transfer inside the flocs and effective fluidity of culture broth in the reactor. L(+)-Lactic acid concentration produced by mycelial flocs in fermentor, with the support and polyethylene oxide, was 103.6 g/L with the yield of 0.86 using 120 g/L of glucose as the substrate for this cultures without both, the concentration was 65.2 g/L. It demonstrates that cotton-like mycelial flocs are the optimal morphology in the culture of R. oryzae. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 461-470, 1997.  相似文献   

16.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

17.
三相鼓泡塔生物反应器培养云芝菌合成漆酶   总被引:1,自引:0,他引:1  
为了提高云芝菌发酵生产漆酶的效率,提出了一种利用自絮凝菌丝球在三相鼓泡塔生物反应器中重复分批发酵产漆酶的新方法。在优化后的产酶条件下,考察维生素C的添加浓度对漆酶活力的影响,并通过在培养基中添加维生素C进行漆酶多批次培养。研究结果表明,维生素C的添加浓度为1.50mmol/L时,可使漆酶活力提高2.6倍。连续进行了10批培养,每批最大漆酶的活力均在1000 U/mL以上,最高酶活出现在第五批为1919.6 U/mL,总培养时间达25 d。此方法所得漆酶对染料靛蓝具有明显的脱色降解作用,在介体1-羟基苯并三唑(HBT)用量0.10%,漆酶用量100 U/L条件下作用40 min时,靛蓝脱色率达到96.7%。该方法采用的三相鼓泡塔生物反应器性能稳定、菌丝球可重复使用,该方法有利于漆酶的高效、规模化生产。  相似文献   

18.
Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes where the presence of baffles is undesirable for some reason. For instance, in the case of shear sensitive cell cultivation (e.g. human cells), unbaffled tanks have been recently found to be able to provide sufficient mass transfer through the free surface vortex. As a consequence the need for bubble formation and subsequent bursting, along with relevant cells damage, is conveniently avoided. In this work the influence of impeller geometry on mass transfer performance and power demand of an unbaffled stirred vessel operating both in sub-critical conditions (the free surface vortex has not yet reached the impeller) and in super-critical conditions (the free surface vortex has reached the impeller and a gas phase is ingested and dispersed inside the reactor) is presented.Experimental results show that the mass transfer performance of unbaffled systems is mainly affected by specific power consumption. Among the stirrer geometries investigated a simple PBT was found to provide the most interesting oxygen transfer performance in the sub-critical regime, and can therefore be regarded as a particularly suitable stirrer for shear sensitive cultures. As regards the super-critical regime, unbaffled tanks are found to provide a performance comparable with that of the standard (baffled) bioreactors, hence resulting in a viable alternative also for fermentations involving robust cells.  相似文献   

19.
A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.  相似文献   

20.
Development of a novel bioreactor system for treatment of gaseous benzene   总被引:1,自引:0,他引:1  
A novel, continuous bioreactor system combining a bubble column (absorption section) and a two-phase bioreactor (degradation section) has been designed to treat a gas stream containing benzene. The bubble column contained hexadecane as an absorbent for benzene, and was systemically chosen considering physical, biological, environmental, operational, and economic factors. This solvent has infinite solubility for benzene and very low volatility. After absorbing benzene in the bubble column, the hexadecane served as the organic phase of the two-phase partitioning bioreactor, transferring benzene into the aqueous phase where it was degraded by Alcaligenes xylosoxidans Y234. The hexadecane was then continuously recirculated back to the absorber section for the removal of additional benzene. All mass transfer and biodegradation characteristics in this system were investigated prior to operation of the integrated unit, and these included: the mass transfer rate of benzene in the absorption column; the mass transfer rate of benzene from the organic phase into the aqueous phase in the two-phase bioreactor; the stripping rate of benzene out of the two-phase bioreactor, etc. All of these parameters were incorporated into model equations, which were used to investigate the effects of operating conditions on the performance of the system. Finally, two experiments were conducted to show the feasibility of this system. Based on an aqueous bioreactor volume of 1 L, when the inlet gas flow and gaseous benzene concentration were 120 L/h and 4.2 mg/L, respectively, the benzene removal efficiency was 75% at steady state. This process is believed to be very practical for the treatment of high concentrations of gaseous pollutants, and represents an alternative to the use of biofilters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号