首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary Japanese quail have a circadian rhythm of locomotor activity whose free-run period () in constant darkness (DD) was 22.5±0.1 h (45). A phase response curve of typical form was obtained by illuminating the free-running rhythm with single 1 h light pulses. Using entrainment theory a derived phase response curve was calculated from the phase relationships between the locomotor rhythm and 1 h light periods in light-dark cycles of various lengths (T). Although the limits of entrainment to theseT cycles differed slightly from those predicted, there was a close correlation between the two phase response curves. The phase relationships between the locomotor rhythm and 1–9 h photoperiods in 24 h cycles were in general accord with a prediction based on the short free-run period and the relative sizes of the delay and advance portions of the phase response curve for 1 h light pulses.  相似文献   

2.
3.
ABSTRACT

Melatonin, an essential pineal hormone, acts as a marker of the circadian clock that regulates biological rhythms in animals. The effects of exogenous melatonin on the circadian system of nocturnal rodents have been extensively studied; however, there is a paucity of studies on the phase-resetting characteristics of melatonin in diurnal rodents. We studied the phase shifting effects of exogenous melatonin as a single melatonin injection (1 mg/kg) at various phases of the circadian cycle on the circadian locomotor activity rhythm in the palm squirrel, Funambulus pennantii. A phase response curve (PRC) was constructed. Adult male squirrels (N = 10) were entrained to a 12:12 h light-dark cycle (LD) in a climate-controlled chronocubicle with food and water provided ad libitum. After stable entrainment, squirrels were transferred to constant dark condition (DD) for free-running. Following stable free run, animals were administered a single dose of melatonin (1 mg/kg in 2% ethanol-phosphate buffered saline (PBS) solution) or vehicle (2% ethanol-PBS solution) at circadian times (CTs) 3 h apart to evoke phase shifts. The phase shifts elicited at various CTs were plotted to generate the PRC. A dose response curve was generated using four doses (0.5, 1, 2 and 4 mg/kg) administered at the CT of maximum phase advance. Melatonin evoked maximum phase advances at CT0 (1.23 ± 0.28 h) and maximum phase delays at CT15 (0.31 ± 0.09 h). In the dose response experiment, maximal phase shifts were evoked with 1 mg/kg. In contrast, no significant shifts were observed in control groups. Our study demonstrates that the precise timing and appropriate dose of melatonin administration is essential to maximize the amelioration of circadian rhythm–related disorders in a diurnal model.  相似文献   

4.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

5.
Effects of external ionic conditions on light induced phase shifting of the circadian rhythm of conidiation in Neurospora crassa were examined in simple buffer solutions for discerning effects of individual ions. Mycelia were cultured to liquid media of different pHs and then transferted to 10 mM piperazine-N,N-bis(2-ethanesulmonic acid) (Pipes) buffer of various pHs and irradiated with while light. The phase of the rhythm of dark controls was not changed by transfer from medium to buffer. When mycelia were cultured in media of pH above 6.7, light did not advance the phase of the clock in Pipes buffer alone. However, light-induced phase advance was restored when an ammonium salt was added to buffer of pH higher than 7.6. An amination-defective mutant, bd am, showed the same response to ammonium nitrate as the wild-type strain, bd. Ammonium must be present before light irradiation for restoration of phase shifting. Free-amino-acid pools in the cells were changed by treatment with Pipes buffer: aspartle acid, glutamic acid, ammonia, glutamine and ornithine levels decreased, while lysine and histidine increased. Addition of ammonium nitrate to Pipes buffer resulted in further changes in amino-acid pools; lysine, histidine, arginine, alanine and ornithine decreased, and glutamine levels increased. Irradiation did not result in significant changes in amino acid pools.Abbreviation Pipes piperazine-N,N-bis(2-ethanesulfoniccid)  相似文献   

6.
The opening of excised Samanea saman pulvini is promoted by prolonged blue or far-red irradiation. Far-red effects are attributed partially but not completely to lowering of the Pfr level. Two hours of continuous or pulsed blue light or pulsed far-red light (total dosage = 2.2 × 1018 quanta per square centimeter in all cases) also phase shifts the rhythm in Samanea while two hours of continuous blue light phase shifts the rhythm in the related plant Albizzia julibrissin. The same pigments appear to regulate opening and rhythmic phase shifting. The blue light-induced phase response curve has smaller advance and delay peaks and differs in shape from the curve induced by brief red light pulses absorbed by phytochrome. The blue absorbing pigment has not been identified, but it does not appear to be phytochrome acting in a photoreversible mode.  相似文献   

7.
Neurospora crassa (bdA) mycelia were kept in liquid culture. Without rhythmic conidiation the levels of adenine nucleotides undergo circadian changes in constant darkness. Maxima occur 12-17 hr and 33-35 hr after initiation of the rhythm, i.e., at CT 0-6 hr. Pulses of metabolic inhibitors such as vanadate (Na3Vo4), molybdate (Na2MoO4: 2 H2O), N-ethylmaleimide (NEM), azide (NaN3), cyanide (NaCN) and oligomycin phase shift the circadian conidiation rhythm of Neurospora crassa. Maximal advance phase shifts are observed at about CT 6 with all inhibitors.

Pulses of N,N'dicyclohexylcarbodiimide (DCCD) and light phase shift the conidiation rhythm following a phase response curve different from those of the other agents (maximal advance at about CT 18-24). The phase shifts with DCCD and light are significantly larger in the wild type compared to the mitochrondrial mutant poky. Such differences are not found in PRCs of the protein synthesis inhibitor cycloheximide.

[31P] NMR spectra of wild type Neurospora crassa and the clock mutants frq 1 and frq 7 which differ in their circadian period lengths did not reveal differences in the concentrations of adenine nucleotides, pyridine nucleotides or sugar phosphates. Starvation causes drastic changes of the levels of adenine nucleotides, phosphate and mobile polyphosphate without effecting phase or period length of the circadian rhythm.  相似文献   

8.
Summary Dose and phase response curves for phase shifting the circadian oscillator in the dinoflagellateGonyaulax polyedra were measured with pulses of the antibiotic anisomycin (an inhibitor of protein synthesis on 80 S ribosomes), using the bioluminescent glow rhythm as the assay. The three dimensional surface of final phase, initial phase, and concentration was found to be a right handed helix, with the axis at a critical initial phase near circadian time 12 h, and critical concentration near 0.2 micromolar anisomycin (for 1 h pulses). The normally rhythmic glow of populations ofGonyaulax was significantly disrupted by pulses with these critical parameters, and in many instances appeared nearly arrhythmic.With increasing drug concentration, phase response curves appear to move bodily to earlier phases, and no saturation is evident in the phase shifting effect. These results are interpreted as indicating that anisomycin at sufficiently high doses causes an immediate strong (type 0) phase shift, then holds the clock stationary for a time interval that increases with concentration.the possibility that the 80 S ribosomal complex may be centrally involved in the fundamental circadian oscillation is put forward.Abbreviations DRC dose response curve - PRC phase response curve  相似文献   

9.
About 15% of the legally blind completely lack light perception. Most of these individuals have abnormally phased circadian rhythms and many free-run. Light treatment is not an option for them. However, melatonin treatment can be highly effective. A daily dose of 0.5 mg of melatonin usually results in entrainment. It has been suggested that treatment in individuals with circadian periods > 24 h should be initiated on the advance zone of the melatonin phase response curve, which was based on findings in which melatonin initiated on the delay zone were less likely to result in entrainment, even though treatment continued across all circadian phases. In the present study, 7 totally blind people started low-dose melatonin treatment (0.5 mg; 1 person was given 0.05 mg) on the delay zone. All entrained as circadian phase free-ran and the advance zone of the melatonin phase response curve coincided with the time of melatonin administration. These results are consistent with studies in other mammals. It does not appear that low-dose melatonin treatment needs to be initiated on the advance zone to induce eventual entrainment in blind people with free-running rhythms > 24 h. Therefore, it is not essential that circadian phase be ascertained before starting low-dose melatonin treatment of blind people.  相似文献   

10.
Abstract

The circadian rhythm in the flight activity of a tropical microchiropteran bat Taphozous melanopogon responds at all phases with delay phase shifts to single light‐on steps (DD/LL transfers). The circadian rhythm responds at all phases with advance phase shifts to single light‐off steps (LL/DD transfers). Phase shifts were measured from the delays or advances of the onsets of flight activity on days following DD/LL and LL/DD transfers relative to the temporal course of the onsets of activity in controls. The magnitude of the phase shifts was a function of the phases in which the transfers were made. The On‐PRC and Off‐PRC plotted from such data are mirror‐images in their time‐course and wave‐form.

The phase shifts of the circadian rhythm in either direction were accompanied by changes in period (for the duration of our recordings after die transfer). The period lengthened following a delay shift and it shortened following an advance shift. The phase shifts are abrupt and discernible in the first cycle after perturbation. There are no transients.  相似文献   

11.
The circadian rhythm of locomotor activity of the field mouse Mus booduga was studied and single animal phase response curves (PRCs) (n = 8) were constructed for 15-min daylight pulses of 1000 lux intensity. The light pulses, presented at different phases of the circadian cycle, evoked advancing and delaying phase shifts (ΔPHs) depending on the circadian time (CT) of light pulse application. ΔPHs by light pulses applied at the same phase are strongly correlated with the animals' circadian period (τ). The results indicate a significant correlation between (i) τ and the area under the advance zone of the PRC (A) (r = +0.72, p > 0.05), (ii) τ and the area under the delay zone of the PRC (D) (r = -0.98, p > 0.00001), (iii) τ and the difference between the area under delay and advance zone of PRC (D-A) (r = -0.97, p > 0.00001), and (iv) between τ and ΔpHs (at various phases of the circadian cycle) and further suggest that the waveform and time course of PRC depend on the animals' endogenous period (τ). (Chronobiology International, 13(6), 401–409, 1996)  相似文献   

12.
In circadian rhythms, the shape of the phase response curves (PRCs) depends on the strength of the resetting stimulus. Weak stimuli produce Type 1 PRCs with small phase shifts and a continuous transition between phase delays and advances, whereas strong stimuli produce Type 0 PRCs with large phase shifts and a distinct break point at the transition between delays and advances. A stimulus of an intermediate strength applied close to the break point in a Type 0 PRC sometimes produces arrhythmicity. A PRC for the circannual rhythm was obtained in pupation of the varied carpet beetle, Anthrenus verbasci, by superimposing a 4-week long-day pulse (a series of long days for 4 weeks) over constant short days. The shape of this PRC closely resembles that of the Type 0 PRC. The present study shows that the PRC to 2-week long-day pulses was Type 1, and that a 4-week long-day pulse administered close to the PRC’s break point induced arrhythmicity in pupation. It is, therefore, suggested that circadian and circannual oscillators share the same mode in phase resetting to the stimuli.  相似文献   

13.
Summary The suprachiasmatic nucleus (SCN) of the hypothalamus contains a neural oscillatory system which regulates many circadian rhythms in mammals. Immunohistochemical evidence indicates that a relatively high density of GABAergic neurons exist in the suprachiasmatic region. Since intraperitoneal injections of the benzodiazepine, triazolam, have been shown to induce phase shifts in the free-running circadian rhythm of locomotor activity in the golden hamster, the extent to which microinjections of muscimol, a specific agonist for gamma-aminobutyric acid (GABA), may cause phase-shifts in hamster activity rhythms was investigated. Stereotaxically implanted guide cannulae aimed at the region of the SCN were used to deliver repeated microinjections in individual animals. A phase-response curve (PRC) generated from microinjections of muscimol revealed that the magnitude and direction of permanent phase-shifts in the activity rhythm were associated with the time of administration. The PRC generated for muscimol was characterized by maximal phase-advances induced 6 h before activity onset and by maximal phase-delays which occurred 6 h after activity onset. The PRC for muscimol had a shape similar to a PRC previously generated for the short-acting benzodiazepine, triazolam. Single microinjections of different doses of muscimol given 6 h before activity onset induced phase-advances in a dose-dependent fashion. Histological analysis revealed that phase shifts induced by the administration of muscimol were associated with the proximity of the injection site to the SCN area. These data indicate that a GABAergic system may exist within the suprachiasmatic region as part of a central biological clock responsible for the regulation of the circadian rhythm of locomotor activity in the golden hamster.Abbreviations CT circadian time - GABA gamma-aminobutyric acid - OC optic chiasm - PRC phase-response curve - SEM standard error of mean - SCN suprachiasmatic nuclei - T track - IIIV third ventricle  相似文献   

14.
Wheel‐running activity was recorded in Lemniscomys barbarus exposed to different lighting conditions. This rodent shows rhythmic locomotor activity under natural twilight‐light/dark (LD) as well as squared‐LD cycles. A mean of 77% of the activity occurred during the light phase. Under different controlled photoperiods, the quantity of daily locomotor activity was relatively stable except for a lower level in the shortest photoperiod tested (LD 06∶18). The duration of the active phase tended to increase with the duration of the light phase, especially in the longer photoperiods. Whatever the lighting conditions, Lemniscomys barbarus started running before lights‐on and stopped after lights‐off. The phase angle of activity offset relative to lights‐off was stable in each squared‐photoperiod, whereas the phase angle of activity onset relative to lights‐on was significantly the highest under the shortest photoperiods. Recording of activity under constant lighting conditions showed that the daily rhythm of locomotor activity is fundamentally circadian. The endogenous period was slightly<24 h (mean=23.8 h) in permanent darkness and>24 h (mean=24.5 h) in continuous light. Re‐entrainment of the locomotor activity rhythm after a 6 h phase advance or delay requires only four days on average. Moreover, the phase‐responses curve to a 30 min light pulse (200 lux) in Lemniscomys barbarus kept in constant dark reveals large phase shifts according to circadian times (CT). With CT0 being defined as the onset of daily activity, maximum phase delay and advance shifts were observed at CT11 (Δ Ψ=‐5.7 h±2.3 h) and CT21 (Δ Ψ =4.9±1.2 h), respectively. Interestingly, the phase‐response curve to light did not show any dead zone. Immunohistochemical staining of the suprachiasmatic nuclei indicates that arginine vasopressin‐immunoreactive cell bodies and fibers delimited a dorsal subregion that extends laterally and medially. The ventral subregion is rich in vasoactive intestinal peptide‐immunoreactive neurones overlapping a smaller area containing gastrin‐releasing peptide‐expressing cells and receives numerous fibers labeled with neuropeptide Y antibody. The results of this study clearly demonstrate that Lemniscomys barbarus is a diurnal species highly sensitive to the shifting effects of light. Overall, this rodent can be considered a new and interesting model for circadian rhythm neurobiology.  相似文献   

15.
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respectively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.  相似文献   

16.
Melatonin is known to shift the phase of the locomotor activity rhythm in the field mouse Mus booduga in accordance with a type-I phase response curve (PRC), with phase delays during the subjective day and phase advances during late subjective night and the early subjective day. At CT4 (circadian time 4; i.e. 16 hr. after activity onset) and CT22 of the circadian cycle, a single dose of melatonin (1 mg/kg) is known to evoke maximum delay and maximum advance phase-shifts, respectively. We investigated the dose-dependent responses of the circadian pacemaker of these mice to a single dose of melatonin at the times for maximum delay and maximum advance. The circadian pacemaker responsible for the locomotor activity rhythm in these mice responded to various doses of melatonin in a dose-dependent manner with the magnitude of phase shifts increasing with dose.  相似文献   

17.
The light-growth response of Phycomyces blakesleeanus (Burgeff) is a transient change in elongation rate of the sporangiophore caused by a change in light intensity. Previous investigators have found that the light-growth response has many features in common with phototropism; the major difference is that only the light-growth response is adaptive. In order to better understand the light-growth response and its relationship to phototropism, we have developed a novel experimental protocol for determining light-growth-response action spectra and have examined the effect of the reference wavelength and intensity on the shape of the action spectrum. The null-point action spectrum obtained with broadband-blue reference light has a small peak near 400 nm, a flat region from 430 nm to 470 nm, and an approximately linear decline in the logarithm of relative effectiveness above 490 nm. The shape of the action spectrum is different when 450-nm reference light is used, as has been shown previously for the phototropic-balance action spectrum. However, the action spectrum of the light-growth response differs from that for phototropic balance, even when the same reference light (450 nm) is used. Moreover, for the light-growth response, the relative effectiveness of 383-nm light decreases as the intensity of the 450-nm reference light increases; this trend is the opposite of that previously found for phototropic balance. The dependence of the lightgrowth-response action spectrum on the reference wavelength, its difference from the phototropic-balance action spectrum, and the reference-intensity dependence of the relative effectiveness at 383 nm may be attributable to dichroic effects of the oriented photoreceptor(s), and to transduction processes that are unique to the light-growth response.I dedicated to Masaki Furuya on the occasion of his 65th birthdayThis work was supported by a grant from the National Institutes of Health (GM29707) to E.D. Lipson. Anuradha Palit, Promod Pratap, and Benjamin Horwitz participated in the early phases of this work. We thank Leonid Fukshansky and Benjamin Horwitz for helpful discussions, David Durant for computer programming, and Steven Block for providing us with a C-language program of Reinsch's procedure for cubic spline interpolation. One of us (R.S.) gratefully acknowledges a junior faculty fellowship leave from the Department of Physics at Yale University.  相似文献   

18.
Summary The circadian period of the freerunning activity rhythm in the cockroach is systematically altered by high frequency light-dark cycles (HF-LD) according to the ratio of light to dark within each cycle. With a standard 10 min cycle time, brief (e.g., 0.5 min) exposure to light each cycle causes the free-running period to shorten significantly in comparison to its steady-state value in constant darkness. As the ratio of light to dark in HF-LD is increased, the period of the rhythm is progressively lengthened. These findings are discussed in terms of the general proposition that light, applied throughout the circadian cycle, predictably modifies periodicity according to the asymmetrical shape of the circadian phase response curve.Abbreviations LD light-dark cycles in which cycle length is in hours - HF-LD light-dark cycles in which cycle length is in min; period of the activity rhythm; change in period of the activity rhythm - PRC phase response curve - LL constant light  相似文献   

19.
Summary The eye of the marine mollusk Aplysia californica contains a photo-entrainable circadian pacemaker that drives an overt circadian rhythm of spontaneous compound action potentials in the optic nerve. Both light and serotonin are known to influence the phase of this ocular rhythm. The current study evaluated the effect of FMRFamide on both light and serotonin induced phase shifts of this rhythm. The application of FMRFamide was found to block serotonin induced phase shifts but, by itself, FMRFamide did not cause significant phase shifts. Furthermore, the effects of FMRFamide on light-induced phase shifts appeared to be phase dependent (i.e., the application of FMRFamide inhibited light-induced phase delays but actually enhanced the magnitude of phase advances). As in Aplysia, the eye of Bulla gouldiana also contains a circadian pacemaker. In Bulla, FMRFamide prevented light-induced phase advances and delays. Although FMRFamide alone generated phase dependent phase shifts, it did not cause phase shifts at the phases where it blocked the effects of light. These data demonstrate that FMRFamide can have pronounced modulatory effects on phase shifting inputs to the ocular pacemakers of both Aplysia and Bulla.Abbreviations ASW artificial seawater - CAP compound action potential - CT circadian time - 5-HT serotonin  相似文献   

20.
General anaesthesia administered during the day has previously been shown to phase shift the honey bee clock. We describe a phase response curve for honey bees (n=105) to six hour isoflurane anaesthesia. The honey bee isoflurane PRC is “weak” with a delay portion (maximum shift of –1.88 hours, circadian time 0 – 3) but no advance zone. The isoflurane-induced shifts observed here are in direct opposition to those of light. Furthermore, concurrent administration of light and isoflurane abolishes the shifts that occur with isoflurane alone. Light may thus provide a means of reducing isoflurane–induced phase shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号