首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Male pronucleus formation involves sperm nucleus decondensation and sperm chromatin remodeling. In sea urchins, male pronucleus decondensation was shown to be modulated by protein kinase C and a cdc2-like kinase sensitive to olomoucine in vitro assays. It was further demonstrated that olomoucine blocks SpH2B and SpH1 phosphorylation. These phosphorylations were postulated to participate in the initial steps of male chromatin remodeling during male pronucleus formation. At final steps of male chromatin remodeling, all sperm histones (SpH) disappear from male chromatin and are subsequently degraded by a cysteine protease. As a result of this remodeling, the SpH are replaced by maternal histone variants (CS). To define if sperm nucleus decondensation is coupled with sperm chromatin remodeling, we have followed the loss of SpH in zygotes treated with olomoucine. SpH degradation was followed with anti-SpH antibodies that had no cross-reactivity with CS histone variants. We found that olomoucine blocks SpH1 and SpH2B phosphorylation and inhibits male pronucleus decondensation in vivo. Interestingly, the normal schedule of SpH degradation remains unaltered in the presence of olomoucine. Taken together these results, it was concluded that male nucleus decondensation is uncoupled from the degradation of SpH associated to male chromatin remodeling. From these results, it also emerges that the phosphorylation of SpH2B and SpH1 is not required for the degradation of the SpH that is concurrent to male chromatin remodeling.  相似文献   

2.
We reported recently that the inhibition of cysteine-proteases with E-64-d disturbs DNA replication and prevents mitosis of the early sea urchin embryo. Since E-64-d is a rather general inhibitor of thiol-proteases, to specifically target the cysteine-protease previously identified in our laboratory as the enzyme involved in male chromatin remodeling after fertilization, we injected antibodies against the N-terminal sequence of this protease that were able to inhibit the activity of this enzyme in vitro. We found that injection of these antibodies disrupts the initial zygotic cell cycle. As shown in this report in injected zygotes a severe inhibition of DNA replication was observed, the mitotic spindle was not correctly bipolarized the embryonic development was aborted at the initial cleavage division. Consequently, the injection of these antibodies mimics perfectly the effects previously described for E-64-d, indicating that the effects of this inhibitor rely mainly on the inhibition of the cysteine-protease involved in male chromatin remodeling after fertilization. These results further support the crucial role of this protease in early embryonic development.  相似文献   

3.
Recently many authors have reported that cathepsin L can be found in the nucleus of mammalian cells with important functions in cell‐cycle progression. In previous research, we have demonstrated that a cysteine protease (SpH‐protease) participates in male chromatin remodeling and in cell‐cycle progression in sea urchins embryos. The gene that encodes this protease was cloned. It presents a high identity sequence with cathepsin L family. The active form associated to chromatin has a molecular weight of 60 kDa, which is higher than the active form of cathepsin L described until now, which range between 25 and 35 kDa. Another difference is that the zymogen present in sea urchin has a molecular weight of 75 and 90 kDa whereas for human procathepsin L has a molecular weight of 38–42 kDa. Based on these results and using a polyclonal antibody available in our laboratory that recognizes the active form of the 60 kDa nuclear cysteine protease of sea urchin, ortholog to human cathepsin L, we investigated the presence of this enzyme in HeLa and Caco‐2 cells. We have identified a new nuclear protease, type cathepsin L, with a molecular size of 60 kDa, whose cathepsin activity increases after a partial purification by FPLC and degrade in vitro histone H1. This protease associates to the mitotic spindle during mitosis, remains in the nuclei in binuclear cells and also translocates to the cytoplasm in non‐proliferative cells. J. Cell. Biochem. 111: 1099–1106, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
We had previously reported that a cysteine-protease catalyzes the sperm histones (SpH) degradation associated to male chromatin remodeling in sea urchins. We found that this protease selectively degraded the SpH leaving maternal cleavage stage (CS) histone variants unaffected, therefore we named it SpH-protease. It is yet unknown if the SpH-protease catalyzes the SpH degradation while these histones are organized as nucleosomes or if alternatively these histones should be released from DNA before their proteolysis. To investigate this issue we had performed an in vitro assay in which polynucleosomes were exposed to the active purified protease. As shown in this report, we found that sperm histones organized as nucleosomes remains unaffected after their incubation with the protease. In contrast the SpH unbound and free from DNA were readily degraded. Interestingly, we also found that free DNA inhibits SpH proteolysis in a dose-dependent manner, further strengthening the requirement of SpH release from DNA before in order to be degraded by the SpH-protease. In this context, we have also investigated the presence of a sperm-nucleosome disassembly activity (SNDA) after fertilization. We found a SNDA associated to the nuclear extracts from zygotes that were harvested during the time of male chromatin remodeling. This SNDA was undetectable in the nuclear extracts from unfertilized eggs and in zygotes harvested after the fusion of both pronuclei. We postulate that this SNDA is responsible for the SpH release from DNA which is required for their degradation by the cysteine-protease associated to male chromatin remodeling after fertilization.  相似文献   

5.
At intermediate stages of male pronucleus formation, sperm‐derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A‐H2B (SpH2A‐SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP‐ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine‐protease (SpH‐protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP‐ribose) moiety of these proteins. Because of the selectivity displayed by the SpH‐protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant α‐subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH‐protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling. J. Cell. Biochem. 76:173–180, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
We have identified a 60-kDa cysteine protease that is associated with chromatin in sea urchin zygotes. This enzyme was found to be present as a proenzyme in unfertilized eggs and was activated shortly after fertilization. At a pH of 7.8–8.0, found after fertilization, the enzyme degraded the five sperm-specific histones (SpH), while the native cleavage-stage (CS) histone variants remained unaffected. Based on its requirements for reducing agents, its inhibition by sulfhydryl blocking compounds and its sensitivity to the cysteine-type protease inhibitors (2S,3S)-translator-epoxysuccinyl-L-leucyl-amido-3-methylbutane-ethyl-ester (E-64 d), cystatin and leupeptin, this protease can be defined as a cysteine protease. Consistently, this protease was not affected by the serine-type protease inhibitors phenylmethylsulfonyl fluoride (PMSF) and pepstatin. The substrate selectivity and pH modulation of the protease activity strongly suggest its role in the removal of sperm-specific histones, which determines sperm chromatin remodeling after fertilization. This suggestion was further substantiated by the inhibition of sperm histones degradation in vivo by E-64 d. Based on these three lines of evidence, we postulate that this cysteine protease is responsible for the degradation of sperm-specific histones which occurs during male pronucleus formation. J. Cell. Biochem. 67:304–315, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
The early cell cycles of preimplantation embryo development are unique in the scheme of mitotic cell proliferation as cell division is not coupled to cell growth, leading to a halving of blastomere volume with each cleavage event. Among the early mouse embryonic divisions, the fi rst two are particularly different, lasting almost twice as long as subsequent divisions. The third cell cycle is marked by the transition of a four‐cell embryo into an eight‐cell embryo, and represents the fi rst complete cell cycle occurring after activation of the zygotic genome. The G2/M phase of the third cell cycle is highly variable, lasting between 2–5 hours, and heterogeneity between blastomeres within the same embryo may occur as a part of normal development. The embryo in this image is actively undergoing cleavage from the four‐ to the eight‐cell stage, and blastomeres are captured in multiple phases of the cell cycle, as visualized by chromatin structure (DNA, blue) and microtubule staining (α‐tubulin, green). Two blastomeres sit in interphase with decondensed chromatin masses and a mesh‐like microtubule network, while the remaining blastomeres are actively undergoing mitosis. Of the latter, one is in metaphase, one in early anaphase, and the last in late anaphase. All together, the diversity in cell cycle stages reveals the inherit asynchrony existent within individual blastomeres of a cleavage stage embryo. Mol. Reprod. Dev. 80: 1–1, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at three-cell stage and cytokinesis only occurred in the blastomere containing DNA. The result of chromosome counting showed that the tetraploidization rate of B group was only 7%. To summarize what had been mentioned above, mechanisms on chromosome set doubling of tetraploid induction would be different with different initiation time of hydrostatic pressure treatment. Chromosome set doubling was mainly due to inhibition of the second mitosis when hydrostatic pressure treatment was performed at prometaphase. Otherwise, chromosome set doubling was mainly due to inhibition of the first nuclear division when hydrostatic pressure treatment was performed at anaphase. Induction efficiency of tetraploidization resulted from inhibition of the second cleavage was higher than which resulted from inhibition of the first nuclear division. This study was the first to reveal biological mechanisms on the two viewpoints of chromosome set doubling through effect of initiation time of hydrostatic pressure treatment on chromosome set doubling in tetraploid induction.  相似文献   

11.
Microinjections of antibodies directed against the protein encoded by the c-myc protooncogene strongly inhibit or arrest the early cell cleavage stage of Xenopus laevis embryos. Injections in one blastomere of a two cell stage embryo inhibit the segmentation of this blastomere. The cleavage of the uninjected blastomere behaves normally. Injections of control rabbit immunoglobulins do not alter the embryonic development.  相似文献   

12.
Chen YJ  Shen JL  Feng XQ  Shan ZY  Yan XF  Dong JJ  Zhong SQ  Lei L 《生理学报》2008,60(1):105-112
为了观察蛋白激酶Cα(protein kinase Cα,PKCα在昆明白小鼠受精卵、孤雌激活和四倍体胚胎早期发育阶段的亚细胞定位和致密化进程中的表达变化,本实验利用免疫荧光化学染色与激光共聚焦显微镜观察相结合的方法,对受精卵、孤雌激活和四倍体胚胎早期发育阶段PKCα的表达进行了定位观察,并利用Western blot对三组胚胎致密化进程中PKCα的表达进行定量分析.结果显示,PKCα在上述三组胚胎发育的2-细胞期至囊胚期均有表达,虽然不同胚胎PKCα的分布在同一发育阶段存在差异,却表现出在各胚胎期主要分布于卵裂球核染色质内,以及在胚胎致密化开始,PKCα在卵裂球连接处发生重新分布的共同特点.此外,三组胚胎PKCα在致密化进程中的表达呈升高趋势,即致密化后的表达高于敛密化前.结果表明,PKCct对胚胎致密化的调节具有重要作用,其在8-细胞/4-细胞期的重新分布是胚胎进入桑椹胚期的必然事件,是胚胎致密化的前提,同时伴随蛋白表达增多.此外,PKCα在囊胚期发生了植入前的第二次重新分布.PKCα在三组胚胎各发育阶段表达情况各不相同,它对小鼠胚胎发育的影响体现在整个早期发育阶段.PKCα在小鼠受精卵早期发育阶段的两次重新分布可能与在致密化开始时启动的细胞黏附事件存在某种必然联系.  相似文献   

13.
BACKGROUND: Acquisition of lineage-specific cell cycle duration is a central feature of metazoan development. The mechanisms by which this is achieved during early embryogenesis are poorly understood. In the nematode Caenorhabditis elegans, differential cell cycle duration is apparent starting at the two-cell stage, when the larger anterior blastomere AB divides before the smaller posterior blastomere P(1). How anterior-posterior (A-P) polarity cues control this asynchrony remains to be elucidated.RESULTS: We establish that early C. elegans embryos possess a hitherto unrecognized DNA replication checkpoint that relies on the PI-3-like kinase atl-1 and the kinase chk-1. We demonstrate that preferential activation of this checkpoint in the P(1) blastomere contributes to asynchrony of cell division in two-cell-stage wild-type embryos. Furthermore, we show that preferential checkpoint activation is largely abrogated in embryos that undergo equal first cleavage following inactivation of Galpha signaling.CONCLUSION: Our findings establish that differential checkpoint activation contributes to acquisition of distinct cell cycle duration in two-cell-stage C. elegans embryos and suggest a novel mechanism coupling asymmetric division to acquisition of distinct cell cycle duration during development.  相似文献   

14.
The object of this study was to determine the kinetics of chromosome decondensation during the G1 period of the HeLa cell cycle. HeLa cells synchronized in the G1 period following the reversal of mitotic block were fused with Colcemid-arrested mitotic HeLa cells at 1.5, 3, 5, and 7 h after the reversal of N2O block. The resulting prematurely condensed chromosomes (PCC) were classified into six categories depending on the degree of their condensation. The frequency of occurrence of each category was plotted as a function of time after mitosis. The results of this study indicate that the process of chromosome decondensation, initiated during the telophase of mitosis continues throughout the G1 period without any interruption, thus the chromatin reaches an ultimate state of decondensation by the end of G1 period, when DNA synthesis is initiated.  相似文献   

15.
Cloning technology would allow targeted genetic alterations in the rat, a species which is yet unaccessible for such studies due to the lack of germline-competent embryonic stem cells. The present study was performed to examine the developmental ability of reconstructed rat embryos after transfer of nuclei from early preimplantation stages. We observed that single blastomeres from two-cell embryos and zygotes reconstructed by pronuclei exchange can develop in vitro until morula/blastocyst stage. When karyoplasts from blastomeres were used for the reconstruction of embryos, highest in vitro cleavage rates were obtained with nuclei in an early phase of the cell cycle transferred into enucleated preactivated oocytes or zygotes. However, further in vitro development of reconstructed embryos produced from blastomere nuclei was arrested at early cleavage stages under all conditions tested in this study. In contrast, immediate transfer to foster mothers of reconstructed embryos with nuclei from two-cell embryos at an early stage of the cell cycle in preactivated enucleated oocytes resulted in live newborn rats, with a general efficiency of 0.4%-2.2%. The genetic origin of the cloned offspring was verified by using donor nuclei from embryos of Black Hooded Wistar rats and transgenic rats carrying an ubiquitously expressed green fluorescent protein transgene. Thus, we report for the first time the production of live cloned rats using nuclei from two-cell embryos.  相似文献   

16.
During the transition from the four- to the eight-cell stage in ctenophore embryos, each blastomere produces one daughter cell with the potential to form comb plate cilia and one daughter cell that does not have this potential. If the second cleavage in a two-cell embryo is blocked, at the next cleavage these embryos frequently form four blastomeres which have the configuration of the blastomeres in a normal eight-cell embryo. At this division there is also a segregation of comb plate-forming potential. By compressing a two-cell embryo in a plane perpendicular to the first plane of cleavage it is possible to produce a four-cell blastomere configuration that is identical to that produced following the inhibition of the second cleavage. However, under these circumstances the segregation of comb plate potential does not occur. These results suggest that the appropriate plane of cleavage must take place for a given cleavage cycle, in order for localizations of developmental potential to be properly positioned within blastomeres.  相似文献   

17.
Zhu XP  You F  Zhang PJ  Xu JH  Sun W 《Theriogenology》2007,68(6):873-881
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder.  相似文献   

18.
In this study we reinvestigate the early development of the freshwater mussel Dreissena polymorpha, previously studied by Meisenheimer (1901). The data include video time-lapse recordings of living embryos and bisbenzimide stains of fixed embryos as well as morphometry on fixed, serially-sectioned embryos. We present the cell lineage and cell cycle durations up to the first indication of symmetrization within this embryo. We show that early cell cycles last approximately 1h. A dramatic extension of cell cycle duration and a concomitant asynchrony among the various cell lines was observed starting at the fifth cleavage. Short cell cycles, like those of early blastomeres, were a constant property of the largest descendants of the 2d-cell line only. In contrast to Meisenheimer's observations and our experiences with other spiralian embryos, the cleavage pattern proved to follow multiple alternatives. The embryonic quadrants A-D were arranged in either a clockwise or counter-clockwise fashion and the chirality of the third cleavage was either dextral or sinistral irrespective of the arrangement of the quadrants. As a consequence, four different blastomere configurations were encountered and the dorsoventral axis could take four different angles with respect to the plane of first cleavage. The dorsal side was most easily recognized by the position of the 2d-micromere at the 16-cell stage. The fact that all of such embryos could develop into normal, uniform larvae is interpreted as the result of cell-cell interactions in morphogenetic regulation.  相似文献   

19.
The sea urchin genome contains several histone gene families whose expression is regulated in a developmental and tissue-specific fashion. The Cleavage Stage (CS) histone subtype is synthesized in unfertilized eggs and in embryos until the third cell cycle. The Early (E) subtype is synthesized during embryogenesis from the 2-4 cell stage to blastula. The only variant produced from the mesenchyme blastula stage to adult is the Late (L) subtype. In addition, two "sperm-specific" histone genes (SpH1 and SpH2B) are expressed exclusively in testis and their corresponding products are incorporated in sperm chromatin. In this review I will describe in some detail what is known about the characteristics of the various histone subtypes, with special focus on the Sp variants, and discuss the possible meaning of the presence of these histone variants during sea urchin development.  相似文献   

20.
During the eukaryotic cell cycle, chromatin undergoes several conformational changes, which are believed to play key roles in gene expression regulation during interphase, and in genome replication and division during mitosis. In this paper, we propose a scenario for chromatin structural reorganization during mitosis, which bridges all the different scales involved in chromatin architecture, from nucleosomes to chromatin loops. We build a model for chromatin, based on available data, taking into account both physical and topological constraints DNA has to deal with. Our results suggest that the mitotic chromosome condensation/decondensation process is induced by a structural change at the level of the nucleosome itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号