首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of primary cultured adipocytes with 50 ng/ml insulin and 20 mM glucose for 0-6 h resulted in a loss of maximal insulin responsiveness (MIR) which was immediate (no lag period), rapid (t1/2 of 3 h), linear, and extensive (80% of that seen at 24 h), whereas loss of insulin sensitivity from 0-24 h was slow (t1/2 = 8 h), extensive (insulin ED50 of 0.3 and 1.45 ng/ml at 2 and 24 h, respectively), and was preceded by an initial 2-h lag. Recovery of MIR and insulin sensitivity was assessed by inducing desensitization for various times from 2-24 h, removing insulin and glucose, and then measuring MIR and insulin sensitivity over a subsequent 1-6-h period. After 2 h, recovery of MIR in desensitized cells was rapid (251 pmol of glucose/3 min/h), whereas after 24 h, recovery was much slower (35 pmol/3 min/h). In contrast, the opposite trend was seen for recovery of insulin sensitivity: at early times recovery of insulin sensitivity was slow (0.05 ng/ml/h) but was rapid after 24 h (0.12 ng/ml/h). Thus, it appears that MIR and insulin sensitivity can be independently regulated since recovery rates for MIR and insulin sensitivity diverged with the progression of insulin resistance. When the effects of insulin and glucose on recovery were examined, we found that insulin alone was unable to block recovery of MIR or insulin sensitivity. Glucose alone, however, was effective in preventing recovery of insulin sensitivity but not recovery of MIR. In the presence of 20 mM glucose, low doses of insulin (treatment EC50 = 0.22-0.46 ng/ml) effectively prevented recovery of both MIR and insulin sensitivity. De novo protein synthesis apparently is not involved in the development of insulin resistance or the reversal of desensitization since inhibition of protein synthesis by cycloheximide had no effect on the loss of MIR and insulin sensitivity or recovery.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Using the number and concentration of amino acids in Dulbecco's modified Eagle's medium as reference (DMEM = 100%), we found that a maximally effective concentration of insulin (10 ng/ml) stimulated protein synthesis by 125% over basal rate in the presence of 50% amino acids (EC50 = 19%), but by only 48% in amino acid-free buffer. Moreover, time course experiments revealed that amino acid regulation of insulin action was very rapid (t1/2 of 9.5 min) and readily reversible (less than 30 min). This effect was specific in that basal rates of protein synthesis were unaltered by amino acids. A second effect of amino acids was to markedly enhance insulin sensitivity of the protein synthesis system in a dose-dependent manner. Thus, the half-maximally effective concentrations of insulin required to stimulate protein synthesis fell from 0.43 to 0.25 to 0.15 ng/ml in the presence of 0, 50, and 150% amino acids. Neither insulin sensitivity nor maximal insulin responsiveness of the glucose transport system was altered by amino acids, nor did amino acids affect the insulin binding capacity of cells. When we divided the 14 amino acids found in DMEM into two groups, we found that one group of 7 amino acids had little or no effect on insulin sensitivity or responsiveness, whereas the other group was fully active (a 157% increase in insulin responsiveness, ED50 of 0.21 ng/ml versus a 68% increase, ED50 of 0.51 ng/ml, with no amino acids). Isoleucine and serine together increased both insulin sensitivity and responsiveness to 60-70% of that seen with the full complement of amino acids. In conclusion: 1) amino acids modulate insulin action by enhancing maximal insulin responsiveness and insulin sensitivity of the protein synthesis system, and the regulatory site of amino acid action appears to be distal to the common signal pathway, within the insulin action-protein synthesis cascade, and 2) the effects of amino acids are specific, in that basal rates of protein synthesis are unaffected, only certain amino acids influence insulin action, and amino acids fail to alter insulin binding or the insulin-responsive glucose transport system. These studies, together with those in the companion paper, demonstrate that the pleiotropic actions of insulin on enhancing glucose uptake and protein synthesis are mediated through divergent pathways that can be independently regulated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In this report, we show that insulin stimulated the incorporation of tracer [3H]leucine into protein of 3T3-L1 adipocytes within 2 min of insulin addition. The concentration of insulin required to elicit 50% activation was 4nM. Phenylarsine oxide, an inhibitor of insulin-stimulated glucose transport, blocked not only insulin-stimulated protein synthesis but constitutive protein synthesis as well (Ki, 3 microM). Importantly, protein synthesis was not required for insulin-activated glucose transport since cycloheximide added either before or after insulin had no effect on the stimulated rates of glucose transport.  相似文献   

4.
The long-term regulatory effect of insulin on glucose transport activity and glucose transporter expression was examined in Chinese hamster ovary (CHO) transfectants that overexpress either human insulin receptors of the wild type (CHO-R cells) or human insulin receptors mutated at two major autophosphorylation sites, Tyr1162 and Tyr1163 (CHO-Y2 cells). Previous studies showed that, when acutely stimulated by insulin, CHO-Y2 cells exhibit decreased receptor kinase activity along with decreased signaling of several pathways, including that for glucose transport, as compared with CHO-R cells. We now report the following. (i) When treated for 24 h with insulin (10(-10) to 10(-6) M), CHO-R and CHO-Y2 cells displayed closely similar concentration-dependent increases in 2-deoxyglucose uptake. In both transfectants, the maximal insulin-induced increase (approximately 3.5-fold) in uptake was cycloheximide-sensitive and was paralleled by equivalent increases in the levels of GLUT-1 immunoreactive protein and mRNA. (ii) By contrast, under similar conditions, CHO-Y2 cells exhibited a marked decrease in their response to insulin for [U-14C]glucose incorporation into glycogen (decreased sensitivity and maximal responsiveness) and for [U-14C]leucine incorporation into protein (decreased sensitivity) as compared with CHO-R cells. (iii) After a 24-h treatment with 10(-7) M insulin, CHO-R (but not CHO-Y2) cells showed a decreased ability to respond to a subsequent acute insulin stimulation of either receptor exogenous kinase activity or 2-deoxyglucose uptake as compared with respective untreated controls. These results indicate that (i) insulin receptors mutated at Tyr1162 and Tyr1163 retain normal signaling of the long-term stimulatory effect of insulin on glucose transport activity and GLUT-1 expression, but not on glycogenesis and overall protein synthesis; (ii) these three insulin signaling pathways may be triggered by distinct domains of the insulin receptor beta-subunit; and (iii) wild-type (but not twin-tyrosine mutant) receptors undergo negative regulation by chronic insulin treatment for subsequent signaling of acute biological actions of insulin.  相似文献   

5.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) plays a key role in desensitizing the insulin-responsive glucose transport system (GTS), and recent studies have revealed that loss of GFAT activity accompanies desensitization. To gain insights into the mechanisms underlying loss of enzyme activity, we have used primary cultured adipocytes and two well established inhibitors of mRNA synthesis to estimate GFAT turnover. Both actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) caused a rapid and extensive loss in GFAT activity (greater than 70% loss, t1/2 of 45 min) indicating that GFAT has a relatively short half-life. Since induction of insulin resistance requires GFAT, we next examined the ability of mRNA inhibitors to block glucose-induced desensitization. When adipocytes were cultured for 18 h with 20 mM glucose, amino acids, and 25 ng/ml insulin, maximal insulin responsiveness of the GTS was reduced by greater than 70%. Both actinomycin D and DRB rapidly and completely prevented desensitization in a dose-dependent manner (ED50 of 16 nM and 15 microM, respectively). These findings are the predicted functional consequence of diminished GFAT activity. Evidence that actinomycin D acts selectively on GFAT without influencing other steps within the desensitization pathway was obtained using glucosamine, an agent that enters the hexosamine biosynthesis pathway at a point distal to the action of GFAT. Actinomycin D inhibited glucose-induced desensitization but failed to block glucosamine-induced desensitization. From these studies we conclude that 1) glucose-induced desensitization of the GTS can be completely prevented by actinomycin D and DRB, two potent and diverse inhibitors of mRNA synthesis; 2) the functional integrity of the desensitization pathway is maintained by a short-lived protein; and 3) the identity of this short-lived protein is most likely GFAT, the first and rate-limiting enzyme of the hexosamine biosynthesis pathway.  相似文献   

6.
Amino acids were found to play an integral role in modulating glucose-induced desensitization of the glucose transport system (GTS). When adipocytes were treated for 6 h in a defined buffer containing 25 ng/ml insulin, 20 mM glucose, plus the 15 amino acids found in Dulbecco's modified Eagle's medium, we observed marked desensitization of the GTS, manifested by a 60% decrease in maximal insulin responsiveness (MIR) and a 2.5-fold reduction in insulin sensitivity. In contrast, little or no desensitization was seen under similar conditions in the absence of amino acids. The ability of amino acids to co-regulate the GTS appears to be directly attributable to amino acids per se since desensitization was still observed in cycloheximide-treated cells. Moreover, the action of amino acids is specific to glucose-induced desensitization since amino acids were not required for dexamethasone-induced desensitization of the GTS. Of the 15 amino acids contained in Dulbecco's modified Eagle's medium, one group of 8 amino acids was fully effective in mediating loss of both MIR and insulin sensitivity, whereas the remaining 7 amino acids were ineffective. Interestingly, this second group selectively retained the ability to modulate loss of insulin sensitivity. Upon screening the individual amino acids, we found that L-glutamine (but not D-glutamine) was as effective as total amino acids in modulating loss of MIR, whereas glycine and threonine were only partially effective. Since isoleucine and serine enhanced both MIR and insulin sensitivity of the protein synthesis system without influencing the GTS, it appears that amino acids can influence several insulin effector systems with notable differences in rapidity of action, direction of regulation, and specificity of amino acids. From these studies we conclude: 1) desensitization of the GTS requires three components--glucose, insulin, and selective amino acids; 2) insulin resistance of the GTS can be induced through several mechanisms, but only glucose-induced desensitization requires amino acids; 3) glucose-induced desensitization is mediated primarily by metabolic events independent of de novo protein synthesis; and 4) glutamine is the primary amino acid modulating glucose-induced loss of MIR. Overall, these studies reveal that amino acids play an important role in modulating insulin action at the cellular level and provide new insights into the metabolic mechanisms mediating insulin resistance of the glucose transport system.  相似文献   

7.
The in vitro effect of glucocorticoid on insulin binding and glucose transport was studied with rat adipocytes. Isolated rat adipocytes were incubated with or without 0.70 microgram/ml (1.9 mumol) of hydrocortisone in TCM 199 medium at 37 degrees C, 5% CO2/95% air (v/v), pH 7.4, for 2, 4, and 8 h, and then fat cell insulin binding and insulin-stimulated 3-O-methylglucose transport were measured. Hydrocortisone did not affect insulin binding in terms of affinity or receptor number. Glucose transport in the absence of insulin was significantly decreased at the incubation time of 2 h and continued to decrease up to 8 h of incubation with hydrocortisone. Decreased insulin sensitivity of glucose transport (i.e., a right-ward shift of the dose response curve) was also demonstrated after 2 h incubation with hydrocortisone, and the ED50 of insulin was maximally increased at 4 h of incubation (0.53 ng/ml for treated vs. 0.22 ng/ml for control cells). Maximal insulin responsiveness was also significantly decreased in treated cells after 8 h incubation with hydrocortisone. When percent maximum glucose transport was expressed relative to receptor-bound insulin, the ED50 values of treated and control cells were 10.5 and 7.2 pg of bound insulin, per 2 X 10(5) cells, respectively. Thus, it was evident that glucocorticoid induced a post-receptor coupling defect in the signal transmission of insulin-receptor complex.  相似文献   

8.
At maximally active concentrations with 20-min exposure, insulin and phorbol myristate acetate (PMA) stimulated hexose transport in 3T3-L1 adipocytes by 11- and 2-fold, respectively. The potential role of phosphorylation of the glucose transporter (GT) in these stimulations was investigated by the isolation of GT through immunoprecipitation from ortho[32P]phosphate-labeled 3T3-L1 adipocytes. It was found that there was no significant 32P incorporation into GT from basal adipocytes after 2- or 18 h-labeling in the presence of 0.5 mCi of 32Pi/ml. Furthermore, under these labeling conditions, insulin treatment for 1, 4, or 30 min failed to stimulate the phosphorylation of GT. Also, there was no detectable phosphate incorporation into GT upon reversal of insulin-stimulated hexose transport by the removal of insulin (half-time for reversal approximately 8 min). In contrast to these results, exposure of adipocytes to PMA (1 microM) for 20 min elicited a phosphorylation of GT to the extent of about 0.1 phosphate/GT molecule. Exposure of cells to both insulin and PMA resulted in a 3-fold increase in the level of phosphate in GT compared to that seen with PMA alone. Possibly this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C. Stimulation of hexose transport was the same with the combined treatment of insulin and PMA compared to that seen with insulin alone. These results indicate that neither a change in the phosphorylation state of the GT nor activation of protein kinase C is involved in the mechanism by which the insulin receptor stimulates glucose transport.  相似文献   

9.
Lectins specific for D-mannose (concanavalin A), N-acetyl-D-glucosamine (wheat-germ agglutinin) or D-galactose (Ricinus communis agglutinin I) inhibited insulin binding and activated glucose transport in rat adipocytes [Cherqui, Caron, Capeau & Picard (1982) Mol. Cell. Endocrinol. 28, 627-643]. In the present investigation, the intracellular activities of insulin and lectins on lipogenesis and protein synthesis were studied under conditions where neither agent had an effect on membrane transport processes. (1) When glucose transport was rate-limiting (0.5 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 2.4-3-fold. (2) When passive diffusion of glucose was amplified (10 mM-glucose), insulin (0.8 ng/ml) and lectins (20 micrograms/ml) increased lipogenesis by 1.6-1.8-fold even in the presence of 50 microM-cytochalasin B, which completely blocked glucose transport. (3) Insulin (6 ng/ml), concanavalin A and wheat-germ agglutinin (40 micrograms/ml) stimulated the incorporation of L-[U-14C]leucine into fat-cell protein 1.5-fold but did not modify alpha-aminoisobutyric acid uptake or 14C-labelled protein degradation. (4) Peanut and soya-bean agglutinins (specific for O-glycosidically-linked oligosaccharides), known not to alter insulin binding, were ineffective. (5) Lectin effects were dose-dependent and were markedly inhibited by specific monosaccharides (50 mM). (6) Insulin and lectin maximal effects were not additive and were completely abolished by neuraminidase treatment of fat-cells (0.05 unit/ml). These data indicate involvement of surface sialylated glycoproteins of the complex N-linked type in the insulin stimulation of glucose and amino acid intracellular metabolic processes. They suggest, together with our previous results, that the transmission of the insulin signal for both membrane and intracellular effects occurs via glycosylated effector entities of, or closely linked to, the insulin-receptor complex.  相似文献   

10.
We studied the in vivo and in vitro effect of p-chlorophenoxyisobutyrate (CPIB) on insulin binding and glucose transport in isolated rat adipocytes. In the in vitro study, adipocytes were incubated with 1mM of CPIB for 2 h at 37 degrees C, pH 7.4, and then insulin binding (37 degrees C, 60 min) and 3-0-methylglucose transport (37 degrees C, 2s) were measured. Incubation with CPIB did not affect either insulin binding or glucose transport in the cells. The addition of insulin (10 ng/ml) with CPIB to the incubation media also did not affect the following insulin binding and glucose transport. In the in vivo study, rats were fed a high sucrose-diet containing 0.25% CPIB for 7 days. Serum cholesterol, plasma free fatty acid, and insulin levels were significantly decreased in the CPIB-treated rats. The treated rats demonstrated an almost 2 fold increased maximal binding capacity for insulin (189,000 sites/cell for treated vs 123,000 sites/cell for control cells). Basal glucose transport (glucose transport in the absence of insulin) significantly decreased in the CPIB-treated rats, although insulin-stimulated glucose transport was comparable in treated and control cells. Thus, CPIB might have no direct effect on glucose transport and insulin binding, as determined by the in vitro studies. Furthermore, a relatively short-term in vivo treatment with CPIB, such as 7 days, did not stimulate glucose transport.  相似文献   

11.
12.
Based on our previous finding that desensitization of the insulin-responsive glucose transport system (GTS) requires three components, glucose, insulin, and glutamine, we postulated that the routing of incoming glucose through the hexosamine biosynthesis pathway plays a key role in the development of insulin resistance in primary cultured adipocytes. Two approaches were used to test this hypothesis. First, we assessed whether glucose-induced desensitization of the GTS could be prevented by glutamine analogs that irreversibly inactivate glutamine-requiring enzymes, such as glutamine:fructose-6-phosphate amidotransferase (GFAT) the first and the rate-limiting enzyme in hexosamine biosynthesis. Both O-diazoacetyl-L-serine (azaserine) and 6-diazo-5-oxonorleucine inhibited desensitization in 18-h treated cells without affecting maximal insulin responsiveness in control cells. Moreover, close agreement was seen between the ability of azaserine to prevent desensitization of the GTS in intact adipocytes (70% inhibition, ED50 = 1.1 microM), its ability to inactivate GFAT in intact adipocytes (64% inhibition, ED50 = 1.0 microM) and its ability to inactivate GFAT activity in a cytosolic adipocyte preparation (ED50 = 1.3 microM). From these results we concluded that a glutamine amidotransferase is involved in the induction of insulin resistance. As a second approach, we determined whether glucosamine, an agent known to preferentially enter the hexosamine pathway at a point distal to enzymatic amidation by GFAT, could induce cellular insulin resistance. When adipocytes were exposed to various concentrations of glucosamine for 5 h, progressive desensitization of the GTS was observed (ED50 = 0.36 mM) that culminated in a 40-50% loss of insulin responsiveness. Moreover, we estimated that glucosamine is at least 40 times more potent than glucose in mediating desensitization, since glucosamine entered adipocytes at only one-quarter of the glucose uptake rate, yet induced desensitization at an extra-cellular dose 10 times lower than glucose. In addition, we found that glucosamine-induced desensitization did not require glutamine and was unaffected by azaserine treatment. Thus, we conclude that glucosamine enters the hexosamine-desensitization pathway at a point distal to GFAT amidation. Overall, these studies indicate that a unique metabolic pathway exists in adipocytes that mediates desensitization of the insulin-responsive GTS, and reveal that an early step in this pathway involves the conversion of fructose 6-phosphate to glucosamine 6-phosphate by the first and rate-limiting enzyme of the hexosamine pathway, glutamine:fructose-6-phosphate amidotransferase.  相似文献   

13.
The insulin sensitivity of protein synthesis and glucose incorporation into glycogen by the soleus and epitrochlearis muscles from fed rats and 24 h-starved rats was determined in vitro during the first and second hours of incubation after isolation of the muscles. Rates of protein synthesis by both muscles from fed rats in the first hour of incubation were 2-fold higher than in the second hour and were not increased by insulin. Rates of protein synthesis during the first hour in the presence of 6000 microunits of insulin/ml were increased in soleus, but not in epitrochlearis, muscles from starved rats. Rates of protein synthesis in both muscles from fed and starved rats were increased significantly by insulin during the second hour. High concentrations of insulin caused a marked stimulation of the rates of glucose incorporation by both muscles from fed and starved rats in both the first and second hours of incubation. The insulin sensitivity of glucose incorporation during the second hour, defined as the concentration of insulin causing half-maximal stimulation, was increased 10-fold for both muscle types from starved rats (soleus, 65 microunits/ml; epitrochlearis, 45 microunits/ml) relative to muscles from fed rats (soleus, 600 microunits/ml; epitrochlearis, 500 microunits/m). The insulin sensitivity of protein synthesis in the second hour was greater for soleus muscles from starved rats (65 microunits/ml) than from fed rats (500 microunits/ml). In contrast, the insulin sensitivity of protein synthesis in epitrochlearis muscles from starved rats was significantly decreased (225 microunits/ml) compared with fed rats (25 microunits/ml Maximal rates achieved by high concentrations of insulin were not different from those in the same muscle from fed rats. It is suggested that protein synthesis, in distinction to glucose utilization, may be resistant to insulin stimulation during periods of acute starvation in muscles with fibre compositions similar to the epitrochlearis, but not in muscles with fibre compositions similar to the soleus. Partial reversal of the resistance observed in vitro for epitrochlearis muscles from starved rats may be due to the loss of factors which suppress the effect of insulin in vivo.  相似文献   

14.
Treatment of primary cultured adipocytes with 20 mM glucose resulted in a progressive increase in specific 125I-insulin binding that began almost immediately (no lag period) and culminated in a 60% increase by 24 h. This effect was dose-dependent (glucose ED50 of 4.6 mM) and mediated by an increase in insulin receptor affinity. Moreover, it appears that glucose modulates insulin receptor affinity through de novo protein synthesis rather than through covalent modification of receptors, since cycloheximide selectively inhibited the glucose-induced increase in insulin binding capacity (ED50 of 360 ng/ml) and restored receptor affinity to control values. Importantly, insulin sensitivity of the glucose transport system was increased by glucose treatment (63%) to an extent comparable with the enhancement in receptor affinity, thus indicating a functional coupling between insulin binding and insulin action. When the long term effects of insulin were assessed (24 h), we found that insulin treatment reduced 125I-insulin binding by greater than 60% by down-regulating the number of cell surface receptors in a dose-dependent manner (insulin ED50 of 7.4 ng/ml). On the basis of these studies, we conclude that 1) insulin binding is subject to dual regulation (glucose controls insulin action by enhancing receptor affinity, whereas insulin controls the number of cell surface receptors); and 2) glucose appears to modulate insulin receptor affinity through the rapid biosynthesis of an affinity regulatory protein.  相似文献   

15.
Glucose is an important fuel for rat brown adipose tissue in vivo and its utilization is highly sensitive to insulin. In this study, the different glucose metabolic pathways and their regulation by insulin and norepinephrine were examined in isolated rat brown adipocytes, using [6-14C]glucose as a tracer. Glucose utilization was stimulated for insulin concentrations in the range of 40-1000 microU/ml. Furthermore, the addition of adenosine deaminase (200 mU/ml) or adenosine (10 microM) did not alter insulin sensitivity of glucose metabolism. The major effect of insulin (1 mU/ml) was a respective 7-fold and 5-fold stimulation of lipogenesis and lactate synthesis, whereas glucose oxidation remained very low. The 5-fold stimulation of total glucose metabolism by 1 mU/ml of insulin was accompanied by an 8-fold increase in glucose transport. In the presence of norepinephrine (8 microM), total glucose metabolism was increased 2-fold. This was linked to a 7-fold increase of glucose oxidation, whereas lipogenesis was greatly inhibited (by 72%). In addition, norepinephrine alone did not modify glucose transport. The addition of insulin to adipocytes incubated with norepinephrine, induced a potentiation of glucose oxidation, while lipogenesis remained very low. In conclusion, in the presence of insulin and norepinephrine glucose is a oxidative substrate for brown adipose tissue. However the quantitative importance of glucose as oxidative fuel remains to be determined.  相似文献   

16.
17.
We have previously shown in primary cultured rat adipocytes that insulin acts at receptor and multiple postreceptor sites to decrease insulin's subsequent ability to stimulate glucose transport. To examine whether D-glucose can regulate glucose transport activity and whether it has a role in insulin-induced insulin resistance, we cultured cells for 24 h in the absence and presence of various glucose and insulin concentrations. After washing cells and allowing the glucose transport system to deactivate, we measured basal and maximally insulin-stimulated 2-deoxyglucose uptake rates (37 degrees C) and cell surface insulin binding (16 degrees C). Alone, incubation with D-glucose had no effect on basal or maximal glucose transport activity, and incubation with insulin, in the absence of glucose, decreased maximal (but not basal) glucose transport rates only 18% at the highest preincubation concentration (50 ng/ml). However, in combination, D-glucose (1-20 mM) markedly enhanced the long-term ability of insulin (1-50 ng/ml) to decrease glucose transport rates in a dose-responsive manner. For example, at 50 ng/ml preincubation insulin concentration, the maximal glucose transport rate fell from 18 to 63%, and the basal uptake rate fell by 89%, as the preincubation D-glucose level was increased from 0 to 20 mM. Moreover, D-glucose more effectively promoted decreases in basal glucose uptake (Ki = 2.2 +/- 0.4 mM) compared with maximal transport rates (Ki = 4.1 +/- 0.4 mM) at all preincubation insulin concentrations (1-50 ng/ml). Similar results were obtained when initial rates of 3-O-methylglucose uptake were used to measure glucose transport. D-glucose, in contrast, did not influence insulin-induced receptor loss. In other studies, D-mannose and D-glucosamine could substitute for D-glucose to promote the insulin-induced changes in glucose transport, but other substrates such as L-glucose, L-arabinase, D-fructose, pyruvate, and maltose were without effect. Also, non-metabolized substrates which competitively inhibit D-glucose uptake (3-O-methylglucose, cytochalasin B) blocked the D-glucose plus insulin effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
During lactation glucose metabolism in paraovarian adipocytes is characterized by a 40 and 80% decrease of glucose incorporation into CO2 and fatty acids in the presence of insulin. In contrast with the stimulation by insulin of glucose incorporation into lactate, glycerol remains unchanged. As a result, insulin sensitivity of total glucose metabolism (oxidation and lipid synthesis) is not altered in adipocytes from lactating rats.  相似文献   

19.
Insulin's rapid action to increase glucose transport is believed to occur primarily through the translocation of glucose transporters from an intracellular pool to the plasma membrane. To better understand the mechanism involved, we studied the role of protein synthesis in glucose transporter translocation by using the protein synthesis inhibitor, cycloheximide. Isolated rat epididymal adipose cells were incubated in the presence or absence of cycloheximide (10 micrograms/ml) for a total of 120 min. Insulin (7 nM) was added to half of the cells from both groups for the final 30 min. Protein synthesis was inhibited by approximately 90%, as measured by [14C]leucine incorporation, in the cells exposed to cycloheximide. The 3-O-methylglucose uptake in intact cells was slightly increased in the basal state with cycloheximide treatment, but the insulin-stimulated 3-O-methylglucose uptake was unchanged by cycloheximide. The distribution of glucose transporters in the different subcellular membrane fractions, as measured by the cytochalasin B binding assay, was unchanged by cycloheximide. These results suggest that insulin's stimulation of glucose transport and translocation of glucose transporters can occur without acute protein synthesis.  相似文献   

20.
The effects of pre-incubation with isoprenaline and noradrenaline on insulin binding and insulin stimulation of D-glucose transport in isolated rat adipocytes are reported. (1) Pre-incubation of the cells with isoprenaline (0.1-10 microM) in Krebs-Ringer-Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] buffer (30 min, 37 degrees C) at D-glucose concentrations of 16 mM, in which normal ATP levels were maintained, caused a rightward-shift in sensitivity of D-glucose transport to insulin stimulation by 50% and a decrease in maximal responsiveness by 30% (2) [A14-125I]insulin binding was reduced significantly by 35% at insulin concentrations less than 100 mu-units/ml and Scatchard analysis showed that this consisted mainly of a decrease in high-affinity binding. (3) Pre-incubation with catecholamines under the same conditions but at low glucose concentrations (0-5 mM) caused a fall in intracellular ATP levels of 65 and 45% respectively. (4) The fall in ATP additionally lowered insulin binding by 50% at all insulin concentrations and a parallel shift of the binding curves in the Scatchard plot showed that this was due to a decrease in the number of receptors. (5) At low and high ATP concentrations the insulin stimulation of D-glucose transport was inhibited to a similar extent. (6) Pre-incubation with catecholamines thus inhibited insulin stimulation of D-glucose transport in rat adipocytes mainly by a decrease in high-affinity binding of insulin, which was not mediated by low ATP levels. This mechanism may play a role in the pathogenesis of catecholamine-induced insulin resistance in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号