首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

2.
5-Hydroxytryptamine (5-HT) can be released from mast cells and platelets through an IgE-dependent mechanism and may play a role in the pathogenesis of allergic bronchoconstriction. However, the effect of 5-HT on ion transport by the airway epithelium is still controversial. The objective of this study was to determine whether 5-hydroxytryptamine (5-HT) regulates NaCl transport by different mechanisms in the apical and basolateral membrane of tracheal epithelia. We studied the rat tracheal epithelium under short-circuit conditions in vitro. Short-circuit current (I(sc)) was measured in rat tracheal epithelial monolayers cultured on porous filters. 5-HT inhibited Na(+) absorption [measured via Na(+) short-circuit current (I(Na)(sc))] in the apical membrane and stimulated Cl(-) secretion [measured via Cl(-) short-circuit current (I(Cl)(sc))] in the basolateral membrane. Functional localization using selective 5-HT agonists and antagonists suggest that I(Cl)(sc)is stimulated by the basolateral membrane-resident 5-HT receptors, whereas I(Na)(sc) is inhibited by the apical membrane-resident 5-HT2 receptors. The basolateral addition of 5-HT increases intracellular cAMP content, but its apical addition does not. The addition of BAPTA/AM blocked the decrease of I(Na)(sc)which was induced by the apical addition of 5-HT, and 5-HT increased intracellular Ca concentrations. These results indicate that 5-HT differentially affects I(Na)(sc)and I(Cl)(sc)across rat tracheal monolayers through interactions with distinct receptors in the apical and the basolateral membrane. These effects may result in an increase of water movement towards the airway lumen.  相似文献   

3.
4.
Transepithelial transport of Na(+) across the lung epithelium via amiloride-sensitive Na(+) channels (ENaC) regulates fluid volume in the lung lumen. Activators of AMP-activated protein kinase (AMPK), the adenosine monophosphate mimetic AICAR, and the biguanide metformin decreased amiloride-sensitive apical Na(+) conductance (G(Na+)) in human H441 airway epithelial cell monolayers. Cell-attached patch-clamp recordings identified two distinct constitutively active cation channels in the apical membrane that were likely to contribute to G(Na+): a 5-pS highly Na(+) selective ENaC-like channel (HSC) and an 18-pS nonselective cation channel (NSC). Substituting NaCl with NMDG-Cl in the patch pipette solution shifted the reversal potentials of HSC and NSC, respectively, from +23 mV to -38 mV and 0 mV to -35 mV. Amiloride at 1 microM inhibited HSC activity and 56% of short-circuit current (I(sc)), whereas 10 microM amiloride partially reduced NSC activity and inhibited a further 30% of I(sc). Neither conductance was associated with CNG channels as there was no effect of 10 microM pimoside on I(sc), HSC, or NSC activity, and 8-bromo-cGMP (0.3-0.1 mM) did not induce or increase HSC or NSC activity. Pretreatment of H441 monolayers with 2 mM AICAR inhibited HSC/NSC activity by 90%, and this effect was reversed by the AMPK inhibitor Compound C. All three ENaC proteins were identified in the apical membrane of H441 monolayers, but no change in their abundance was detected after treatment with AICAR. In conclusion, activation of AMPK with AICAR in H441 cell monolayers is associated with inhibition of two distinct amiloride-sensitive Na(+)-permeable channels by a mechanism that likely reduces channel open probability.  相似文献   

5.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

6.
Hypoxia reduces alveolar liquid clearance and the nasal potential difference, a marker of airway epithelial sodium transport. The mechanisms underlying this impaired epithelial sodium transport in vivo remain uncertain. We hypothesized that epithelial sodium transport impaired by hypoxia would recover quickly with reoxygenation and that hypoxia decreases the expression of lung epithelial sodium channels and Na,K-ATPases. We studied adult rats exposed to normoxia, hypoxia (Fi(O(2)) = 0.1) for 24 h, or hypoxia followed by recovery in normoxia. Nasal potential differences decreased by 40% with hypoxia (P < 0.001), returning to baseline levels with reoxygenation. Lung Na,K-ATPase activity decreased by 40% with hypoxia (P = 0.003), recovering to baseline levels with reoxygenation. Lung expression of mRNA encoding for epithelial sodium channel (ENaC)-alpha, -beta, and -gamma or for Na,K-ATPase-alpha(1) did not change significantly with hypoxia or recovery nor did lung expression of ENaC-alpha, ENaC-beta, Na,K-ATPase-alpha(1), or Na,K-ATPase-beta(1) protein. We conclude that subacute exposure to moderate hypoxia reversibly impairs airway epithelial sodium transport and lung Na,K-ATPase activity but that those changes are not due to changes in the lung expression of sodium-transporting proteins.  相似文献   

7.
Experiments were conducted to determine the responsiveness of human vas deferens epithelial cell monolayers to adenosine and related agonists. Human abdominal vas deferens epithelial cells have been isolated from adult tissues and grown to confluence on permeable supports. All cells exhibit intense ZO-1 and cytokeratin immunoreactivity. Cultured cell monolayers exhibit high electrical resistance with a lumen-negative potential difference and short circuit current (I(sc)) indicative of anion secretion and/or cation absorption. A portion of the basal I(sc) is inhibited by amiloride. Amiloride-sensitive I(sc) is enhanced by exposure to glucocorticoids and is Na(+) dependent, indicating the presence of epithelial sodium channel-mediated Na(+) absorption. Epithelial anion secretion and intracellular generation of cAMP are acutely stimulated by adenosine and the adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine (NECA), with these effects being fully blocked by 8-phenyltheophylline. Adenosine receptors are localized to the apical membrane of the epithelial cells, as basolateral adenosine is without effect. Freshly excised human vas deferens recapitulate observations made on cultured epithelia when evaluated with the self-referencing vibrating probe: amiloride inhibition of basal ion transport, stimulation by adenosine, and inhibition by 8-phenyltheophyline. These results demonstrate that adult human vas deferens epithelium actively transports ions to generate the luminal environment of the deferent duct. Thus, vas deferens epithelium likely plays an active role in male fertility, and interventions that modulate epithelial function might be exploited to treat male-factor infertility or in contraception.  相似文献   

8.
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung. We first studied primary cultures of adult type II (ATII) epithelium and found that overnight exposure to EF increased Na(+) transport, and this effect was mainly due to factors other than catecholamines. Plasma did not stimulate Na(+) transport in ATII. Purification of EF demonstrated that at least some agent(s) responsible for the amiloride-insensitive component resided within the globulin fraction. ATII exposed to globulins demonstrated a conversion of amiloride-sensitive short-circuit current (I(sc)) to amiloride-insensitive I(sc) with no increase in total I(sc). Patch-clamp studies showed that ATII exposed to EF for 18 h had increased the number of highly selective Na(+) channels in their apical membrane. In situ acute exposure to EF increased the open probability of Na(+)-permeant ion channels in ATII within rat lung slices. EF did increase, by amiloride-sensitive pathways, the alveolar fluid clearance from the lungs of adult rats. We conclude that cardiogenic EF increases Na(+) transport by adult lung epithelia in primary cell culture, in situ and in vivo.  相似文献   

9.
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.  相似文献   

10.
Previous studies demonstrated that chlorzoxazone or 1-ethyl-2-benzimidazolinone (1-EBIO) enhances transepithelial Cl(-) secretion by increasing basolateral K(+) conductance (G(K)) (Singh AK, Devor DC, Gerlach AC, Gondor M, Pilewski JM, and Bridges RJ. J Pharmacol Exp Ther 292: 778-787, 2000). Hence these compounds may be useful to treat cystic fibrosis (CF) airway disease. The goal of the present study was to determine whether chlorzoxazone or 1-EBIO altered ion transport across Delta F508-CF transmembrane conductance regulator homozygous CFT1 airway cells. CFT1 monolayers exhibited a basal short-circuit current that was abolished by apical amiloride (inhibition constant 320 nM) as expected for Na(+) absorption. The addition of chlorzoxazone (400 microM) or 1-EBIO (2 mM) increased the amiloride-sensitive I(sc) approximately 2.5-fold. This overlapping specificity may preclude use of these compounds as CF therapeutics. Assaying for changes in the basolateral G(K) with a K(+) gradient plus the pore-forming antibiotic amphotericin B revealed that chlorzoxazone or 1-EBIO evoked an approximately 10-fold increase in clotrimazole-sensitive G(K). In contrast, chlorzoxazone did not alter epithelial Na(+) channel-mediated currents across basolateral-permeabilized monolayers or in Xenopus oocytes. These data further suggest that alterations in basolateral G(K) alone can modulate epithelial Na(+) transport.  相似文献   

11.
Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O(2)) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, alpha(1)- and beta(1)-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, alpha(1)-Na-K-ATPase and Na/K/2Cl cotransport decreased. alpha- and beta-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.  相似文献   

12.
A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.  相似文献   

13.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

14.
Although the amiloride-sensitive epithelial sodium channel (ENaC) plays an important role in the modulation of alveolar liquid clearance, the precise mechanism of its regulation in alveolar epithelial cells is still under investigation. Protein kinase C (PKC) has been shown to alter ENaC expression and activity in renal epithelial cells, but much less is known about its role in alveolar epithelial cells. The objective of this study was to determine whether PKC activation modulates ENaC expression and transepithelial Na+ transport in cultured rat alveolar epithelial cells. Alveolar type II cells were isolated and cultured for 3 to 4 d before they were stimulated with phorbol 12-myristate 13-acetate (PMA 100 nmol/L) for 4 to 24 h. PMA treatment significantly decreased alpha, beta, and gammaENaC expression in a time-dependent manner, whereas an inactive form of phorbol ester had no apparent effect. This inhibitory action was seen with only 5-min exposure to PMA, which suggested that PKC activation was very important for the reduction of alphaENaC expression. The PKC inhibitors bisindolylmaleimide at 2 micromol/L and G?6976 at 2 micromol/L diminished the PMA-induced suppression of alphaENaC expression, while rottlerin at 1 micromol/L had no effect. PMA elicited a decrease in total and amiloride-sensitive current across alveolar epithelial cell monolayers. This decline in amiloride-sensitive current was not blocked by PKC inhibitors except for a partial inhibition with bisindolylmaleimide. PMA induced a decrease in rubidium uptake, indicating potential Na+-K+-ATPase inhibition. However, since ouabain-sensitive current in apically permeabilized epithelial cells was similar in PMA-treated and control cells, the inhibition was most probably related to reduced Na+ entry at the apical surface of the cells. We conclude that PKC activation modulates ENaC expression and probably ENaC activity in alveolar epithelial cells. Ca2+-dependent PKC is potentially involved in this response.  相似文献   

15.
16.
N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.  相似文献   

17.
Submucosal cholinergic and noncholinergic neurons in intestines have been shown to be involved in regulating epithelial transport functions, particularly stimulating Cl(-) secretion. This study investigates the role of submucosal cholinergic neurons in regulating electrogenic Na(+) absorption in distal colon. Amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux were measured in mucosal and mucosal-submucosal preparations mounted in Ussing chambers. In the mucosal preparation, carbachol (CCh) added to the serosal side inhibited amiloride-sensitive I(sc) and amiloride-sensitive (22)Na(+) absorption. The inhibitory effect of CCh was observed at approximately 0.1 microM, and maximum inhibition of approximately 70% was attained at approximately 30 microM (IC(50) = approximately 1 microM). CCh-induced inhibition of amiloride-sensitive I(sc) was almost totally abolished by 10 microM atropine. Treatment of the tissue with ionomycin markedly reduced amiloride-sensitive I(sc), but a subsequent addition of CCh further decreased it. Also, CCh still had an inhibitory effect, although significantly attenuated, after the tissue had been incubated with a low-Ca(2+) solution containing ionomycin and BAPTA-AM. Applying electrical field stimulation to submucosal neurons in the mucosal-submucosal preparation resulted in inhibition of amiloride-sensitive I(sc), approximately 33% of this inhibition being atropine sensitive. Physostigmine inhibited amiloride-sensitive I(sc), this effect being abolished by atropine. In conclusion, submucosal cholinergic and noncholinergic neurons were involved in inhibiting electrogenic Na(+) absorption in colon. This inhibition by cholinergic neurons was mediated by muscarinic receptor activation.  相似文献   

18.
Distal lung epithelial cells isolated from fetal rats were cultured (48 h) on permeable supports so that transepithelial ion transport could be quantified electrometrically. Unstimulated cells generated a short-circuit current (I(sc)) that was inhibited (~80%) by apical amiloride. The current is thus due, predominantly, to the absorption of Na(+) from the apical solution. Isoprenaline increased the amiloride-sensitive I(sc) about twofold. Experiments in which apical membrane Na(+) currents were monitored in basolaterally permeabilized cells showed that this was accompanied by a rise in apical Na(+) conductance (G(Na(+))). Isoprenaline also increased apical Cl- conductance (G(Cl-)) by activating an anion channel species sensitive to glibenclamide but unaffected by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). The isoprenaline-evoked changes in G(Na(+)) and G(Cl(minus sign)) could account for the changes in I(sc) observed in intact cells. Glibenclamide had no effect upon the isoprenaline-evoked stimulation of I(sc) or G(Na(+)) demonstrating that the rise in G(Cl-) is not essential to the stimulation of Na(+) transport.  相似文献   

19.
Esophageal epithelial cells contain an apical cation channel that actively absorbs sodium ions (Na(+)). Since these channels are exposed in vivo to acid reflux, we sought the impact of high acidity on Na(+) channel function in Ussing-chambered rabbit epithelium. Serosal nystatin abolished short-circuit current (I(sc)) and luminal pH titrated from pH 7.0 to pH > or = 2.0 had no effect on I(sc). Circuit analysis at pH 2.0 showed small, but significant, increases in apical and shunt resistances. At pH < 2.0, I(sc) increased whereas resistance (R(T)) decreased along with an increase in fluorescein flux. The change in I(sc), but not R(T), was reversible at pH 7.4. Reducing pH from 7.0 to 1.1 with H(2)SO(4) gave a similar pattern but higher I(sc) values, suggesting shunt permselectivity. A 10:1 Na(+) gradient after nystatin increased I(sc) by approximately 4 muAmps/cm(2) and this declined at pH < or = 3.5 until it reached approximately 0.0 at pH 2.0. Impedance analysis on acid-exposed (non-nystatin treated) tissues showed compensatory changes in apical (increase) and basolateral (decrease) resistance at modest luminal acidity that were poorly reversible at pH 2.0 and associated with declines in capacitance, a reflection of lower apical membrane area. In esophageal epithelium apical cation channels transport Na(+) at gradients as low as 10:1 but do not transport H(+) at gradients of 100,000:1 (luminal pH 2.0). Luminal acid also inhibits Na(+) transport via the channels and abolishes it at pH 2.0. These effects on the channel may serve as a protective function for esophageal epithelium exposed to acid reflux.  相似文献   

20.
Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2). This dexamethasone-stimulated ion transport was blocked by amiloride analogs with a rank order of potency of benzamil >or= amiloride > EIPA and can thus be attributed to active Na(+) absorption. Studies of apically permeabilized cells showed that this increased transport activity did not reflect a rise in Na(+) pump capacity, whereas studies of basolateral permeabilized cells demonstrated that dexamethasone increased apical Na(+) conductance (G(Na)) from a negligible value to 100-200 microS.cm(-2). Experiments that explored the ionic selectivity of this dexamethasone-induced conductance showed that it was equally permeable to Na(+) and Li(+) and that the permeability to these cations was approximately fourfold greater than to K(+). There was also a small permeability to N-methyl-d-glucammonium, a nominally impermeant cation. Forskolin, an agent that increases cellular cAMP content, caused an approximately 60% increase in I(sc), and measurements made after these cells had been basolaterally permeabilized demonstrated that this response was associated with a rise in G(Na). This cAMP-dependent control over G(Na) was disrupted by brefeldin A, an inhibitor of vesicular trafficking. Dexamethasone thus stimulates Na(+) transport in H441 cells by evoking expression of an amiloride-sensitive apical conductance that displays moderate ionic selectivity and is subject to acute control via a cAMP-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号