首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site--WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM Cell Invasion Assay (Chemicon). N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with alpha2-6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily alpha-fucosylated complex type chains with alpha2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration. The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells.  相似文献   

2.
Carbohydrate moieties of N-cadherin from human melanoma cell lines   总被引:3,自引:0,他引:3  
Expression of N-cadherin an adhesion molecule of the cadherin family, in tumor cells is associated with their increased invasive potential. Many studies suggested the role of N-linked oligosaccharides as important factors that contribute to metastasis by influencing tumor cell invasion and adhesion. N-cadherin is a heavily glycosylated protein. We have analysed the carbohydrate profile of this protein synthesized in human melanoma cell lines: WM35 from the primary tumor site and WM239, WM9, and A375 from different metastatic sites. N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterisation of its carbohydrate moieties was carried out by SDS/PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and analysis of their glycans using highly specific digoxigenin or biotin labelled lectins. The positive reaction of N-cadherin from the WM35 cell line with Galanthus nivalis agglutinin (GNA), Datura stramonium agglutinin (DSA) and Sambucus nigra agglutinin (SNA) indicated the presence of high-mannose type glycans and biantennary complex type oligosaccharides with alpha2-6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines gave a positive reaction with Phaseolus vulgaris leukoagglutinin (L-PHA) and lotus Tetragonolobus purpureas agglutinin (LTA). This indicated the presence of tri- or tetra-antennary complex type glycans with alpha-fucose. In addition, N-cadherin from WM9 (lymphomodus metastatic site) and A375 (solid tumor metastatic site) contained complex type chains with alpha2-3 sialic acid (positive reaction with Maackia amurensis agglutinin--MAA). The results demonstrated that N-glycans of N-cadherin are altered in metastatic melanomas in a way characteristic for invasive tumor cells.  相似文献   

3.
It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of beta1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, alpha3beta1 and alpha(v)beta3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with beta1,6-branches and short polylactosamine chains. In WM9 cells, alpha3beta1 integrin was more variously glycosylated than alpha(v)beta3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and alpha3beta1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of alpha(v)beta3 integrin glycans in melanoma or in any cancer cells.  相似文献   

4.
Cell surface integrins, especially those binding to fibronectin (FN), participate in processes of tumor cell invasion and metastasis. Changes in glycosylation of cell surface adhesion proteins are often associated with malignant transformation of cells. In this study we examined the influence of swainsonine (SW) on adhesion, wound healing and haptotactic migration on FN, comparing the responses of different human melanoma cell lines: primary WM35 and metastatic WM9, WM239 and A375. We also examined the role of alpha subunits in adhesion to FN. All of the antibodies inhibited adhesion to FN but with different efficiencies depending on the cell line. Adhesion was mediated mainly by integrin alpha(5)beta(1) (WM9, A375), alpha(3)beta(1) (WM35, A375, WM239). Scratch wound repair was significantly faster on FN-coated wells than on plastic for all cells except for WM9. A375 and WM9 had the greatest migration ability, both expressing the highest level of alpha(5)beta(1) integrin. It seems very likely that adhesion to FN can be accomplished by many different integrins, but for effective migration alpha(5)beta(1) integrin is responsible. Only A375 and WM239 cell lines reacted to SW treatment. In the presence of SW WM239 and A375 cells had 70% and 40% increased adhesion to FN, and their migration was decreased 40% and 50%, respectively. Interestingly, although most of the cell lines share a common profile of integrins, each line interacted with FN differently. They differed mainly in the repertoire of integrins used for adhesion, and in the manner in which glycosylation affected these processes. The influence of SW was observed in two metastatic cell lines indicating the contribution of glycosylation status to the progression of melanoma. The lack of reaction to SW in WM9 cells may suggest that there is a threshold in the expression level of the highly branched N-glycans that may influence the adhesion and migration properties of the cell.  相似文献   

5.
The common structural alterations in the cell-surface glycoproteins concern the highly elevated expression of tri- and tetra-antennary β1–6-N-acetylglucosamine (β1–6 GlcNAc) bearing N-glycans, which are recognised by Phaseolus vulgaris agglutinin (PHA-L). In this report we identified proteins bearing β1–6 GlcNAc branched N-glycans in three human melanoma cell lines: WM35 — from the primary tumour site, as well as WM239 and WM9 from different metastatic sites: the skin and the lymph node, respectively, by tandem mass spectrometry (MS/MS) on PHA-L agarose bound material, followed by immunochemical identification. Our results show that melanoma cell lines differ from each other in the number of N-glycoproteins bearing β1–6 GlcNAc branched oligosaccharides. Among identified proteins the largest group consists of integrin subunits. In addition, L1-CAM, Mac-2 binding protein, melanoma cell adhesion molecule, intercellular adhesion molecule, melanoma associated antigen, tumour rejection antigen-1, melanoma-associated chondroitin sulfate proteoglycan 4 and lysosome-associated membrane protein (LAMP-1) were found. It was indicated that WM35 cell line showed the lowest number of proteins possessing β1–6 GlcNAc branched N-glycans in comparison to metastatic WM9 and WM239 cell lines. Our data suggest that changes in the number of proteins being a substrate for GlcNAc-TV are better correlated with melanoma development and progression than with expression of cell adhesion molecules.  相似文献   

6.
Glycosylation of integrins has been implicated in the modulation of their function. Characterisation of carbohydrate moieties of alpha(3) and beta(1) subunits from non-metastatic (WM35) and metastatic (A375) human melanoma cell lines was carried out on peptide-N-glycosidase F-released glycans using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). beta(1) integrin subunit from both cell lines displayed tri- and tetraantennary oligosaccharides complex type glycans, but only in A375 cell line was the sialylated tetraantennary complex type glycan (Hex(7)HexNAc(6)FucSia(4)) present. In contrast, only alpha(3) subunit from metastatic cells possessed beta1-6 branched structures. Our data indicate that the beta(1) and alpha(3) subunits expressed by the metastatic A375 cell line carry beta1-6 branched structures, suggesting that these cancer-associated glycan chains may modulate tumor cell adhesion by affecting the ligand binding properties of alpha(3)beta(1) integrin. In direct ligand binding assays, alpha(3)beta(1) integrin from both cell lines binds strongly to fibronectin and to much lesser degree to placental laminin. No binding to collagen IV was observed. Enzymatic removal of sialic acid residues from purified alpha(3)beta(1) integrin stimulates its adhesion to all examined ECM proteins. Our data suggest that the glycosylation profile of alpha(3)beta(1) integrin in human melanoma cells correlates with the acquisition of invasive capacity during melanoma progression.  相似文献   

7.
It is well documented that glycan synthesis is altered in some pathological processes, including cancer. The most frequently observed alterations during tumourigenesis are extensive expression of β1,6-branched complex type N-glycans, the presence of poly-N-acetyllactosamine structures, and high sialylation of cell surface glycoproteins. This study investigated two integrins, α3β1 and αvβ3, whose expression is closely related to cancer progression. Their oligosaccharide structures in two metastatic melanoma cell lines (WM9, WM239) were analysed with the use of matrix-assisted laser desorption ionisation mass spectrometry. Both examined integrins possessed heavily sialylated and fucosylated glycans, with β1,6-branches and short polylactosamine chains. In WM9 cells, α3β1 integrin was more variously glycosylated than αvβ3; in WM239 cells the situation was the reverse. Functional studies (wound healing and ELISA integrin binding assays) revealed that the N-oligosaccharide component of the tested integrins influenced melanoma cell migration on vitronectin and α3β1 integrin binding to laminin-5. Additionally, more variously glycosylated integrins exerted a stronger influence on these parameters. To the best of our knowledge, this is the first report concerning structural characterisation of αvβ3 integrin glycans in melanoma or in any cancer cells.  相似文献   

8.
Changes in the expression of integrins and cadherins might contribute to the progression, invasion and metastasis of transitional cell cancer of the bladder and of melanomas. The expression of alpha5 (P < 0.001), alpha2 and beta1 (P < 0.05 - P < 0.001) integrin subunits in melanoma cells from noncutaneous metastatic sites (WM9, A375) were significantly increased as compared to cutaneous primary tumor (WM35) and metastatic (WM239) cell lines. These differences might be ascribed to the invasive character of melanoma cells and their metastasis to the noncutaneous locations. The significantly heterogeneous expression of beta1 integrin subunit in two malignant bladder cancer cell lines (T24 and Hu456) and nonsignificant differences in the expression of alpha2, alpha3, and alpha5 subunits between malignant and non-malignant human bladder cell lines do not allow an unanimous conclusion on the role of these intergrin subunits in the progression of transitional cancer of bladder. The adhesion molecule, expressed in all studied melanoma and bladder cell lines, that reacted with anti-Pan cadherin monoclonal antibodies was identified as N-cadherin except in the HCV29 non-malignant ureter cell line. However, neither this nor any other bladder or melanoma cell line expressed E-cadherin. The obtained results imply that the replacement of E-cadherin by N-cadherin accompanied by a simultaneous increase in expression of alpha2, alpha3 and alpha5 integrin subunits clearly indicates an increase of invasiveness of melanoma and, to a lesser extent, of transitional cell cancer of bladder. High expression of N-cadherin and alpha5 integrin subunit seems to be associated with the most invasive melanoma phenotype.  相似文献   

9.
The common structural alterations in the cell-surface glycoproteins concern the highly elevated expression of tri- and tetra-antennary beta1-6-N-acetylglucosamine (beta1-6 GlcNAc) bearing N-glycans, which are recognised by Phaseolus vulgaris agglutinin (PHA-L). In this report we identified proteins bearing beta1-6 GlcNAc branched N-glycans in three human melanoma cell lines: WM35--from the primary tumour site, as well as WM239 and WM9 from different metastatic sites: the skin and the lymph node, respectively, by tandem mass spectrometry (MS/MS) on PHA-L agarose bound material, followed by immunochemical identification. Our results show that melanoma cell lines differ from each other in the number of N-glycoproteins bearing beta1-6 GlcNAc branched oligosaccharides. Among identified proteins the largest group consists of integrin subunits. In addition, L1-CAM, Mac-2 binding protein, melanoma cell adhesion molecule, intercellular adhesion molecule, melanoma associated antigen, tumour rejection antigen-1, melanoma-associated chondroitin sulfate proteoglycan 4 and lysosome-associated membrane protein (LAMP-1) were found. It was indicated that WM35 cell line showed the lowest number of proteins possessing beta1-6 GlcNAc branched N-glycans in comparison to metastatic WM9 and WM239 cell lines. Our data suggest that changes in the number of proteins being a substrate for GlcNAc-TV are better correlated with melanoma development and progression than with expression of cell adhesion molecules.  相似文献   

10.
The repertoire of oligosaccharide components of cellular glycoproteins significantly contributes to cell adhesion and communication. In tumor cells, alteration in cellular glycosylation may play a key role in giving rise to invasive and metastatic potential. Over 100 melanoma cell lines deposited in the ESTDAB Melanoma Cell Bank (Tubingen, Germany) were studied for the characteristic glycan composition related to tumor progression. Analysis of: (1) cell adhesion to extracellular matrix proteins—fibronectin, laminin, and collagen; (2) the expression of selected glycosyltransferases—α2,3(Galβ1,3)- and α2,3(Galβ1,4)-sialyltransferases, α1,2- and α1,3-fucosyltransferases, and N-acetylglucosaminyltransferase V; (3) characterization of N-glycans was carried out on uveal (4), primary cutaneous (6), and metastatic (96) melanoma cell lines. Results showed that uveal cells did not adhere to any of the substrates and, in general, possessed less glycans containing α-2,6- and α-2,3-linked sialic acid. The average number of polypeptides bearing β-1,6-branched tri- and tetra antennary glycans(characteristic of the metastatic phenotype)were similar in uveal, primary cutaneous, and metastatic melanoma cell lines. Characterization of N-glycans may open a new perspective in the search for specific glycoproteins that could become targets for the therapeutic modulation of melanoma. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004  相似文献   

11.
N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan “bisection” and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266–4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the “bisecting” GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of “bisecting” GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of “bisected” oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.  相似文献   

12.
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.  相似文献   

13.
Background: Total saponins from Rubus parvifolius L. (TSRP) are the main bioactive fractions responsible for the anti-tumor activities. The work was aimed to evaluate the anti-tumor effect of TSRP in malignant melanoma (MM) in vitro and in vivo.Methods and results: Anti-melanoma cell proliferation, invasion and migration effect of TSRP were detected in human MM A375 cells under the indicated time and dosages. In vivo anti-tumor effect of TSRP was measured in A375 xenograft immunodeficient nude mice. Sixty A375 xenografts were randomly divided into five groups: Vehicle, cyclophosphamide (CTX, 20 mg/kg), TSRP (25 mg/kg), TSRP (50 mg/kg) and TSRP (100 mg/kg) groups for 14 days’ treatment. In addition, the melanoma metastasis in lung in vivo of TSRP was detected in A375 tail vein injection mice, and the histopathalogical analysis of the lung metastasis was detected by Hematoxylin–Eosin (H&E) staining. TSRP significantly inhibited the cell proliferation, invasion and migration of A375 in vitro at the indicated time and dosages. TSRP treatment effectively blocked the tumor growth in immunodeficient nude mice. In addition, TSRP also significantly inhibited the lung metastasis of melanoma.Conclusion: The present study indicated that the TSRP has a remarkable anti-MM effect, which mainly through the inhibition of the cell invasion, migration and tumor metastasis.  相似文献   

14.
Metastatic melanoma is the most aggressive form of this cancer. It is important to understand factors that increase or decrease metastatic activity in order to more effectively research and implement treatments for melanoma. Increased cell invasion through the extracellular matrix is required for metastasis and is enhanced by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits MMP activity. It was previously shown by our group that miR-21, a potential regulator of TIMP3, is over-expressed in cutaneous melanoma. It was therefore hypothesized that increased levels of miR-21 expression would lead to decreased expression of TIMP3 and thereby enhance the invasiveness of melanoma cells. miR-21 over-expression in the melanoma cell lines WM1552c, WM793b, A375 and MEL 39 was accomplished via transfection with pre-miR-21. Immunoblot analysis of miR-21-overexpressing cell lines revealed reduced expression of TIMP3 as compared to controls. This in turn led to a significant increase in the invasiveness of the radial growth phase cell line WM1552c and the vertical growth phase cell line WM793b (p < 0.05), but not in the metastatic cell lines A375 or MEL 39. The proliferation and migration of miR-21 over-expressing cell lines was not affected. Reduced expression of TIMP3 was achieved by siRNA knockdown and significantly enhanced invasion of melanoma cell lines, mimicking the effects of miR-21 over-expression. Treatment of tumor cells with a linked nucleic acid antagomir to miR-21 inhibited tumor growth and increased tumor expression of TIMP3 in vivo in 01B74 Athymic NCr-nu/nu mice. Intra-tumoral injections of anti-miR-21 produced similar effects. This data shows that increased expression of miR-21 enhanced the invasive potential of melanoma cell lines through TIMP3 inhibition. Therefore, inhibition of miR-21 in melanoma may reduce melanoma invasiveness.  相似文献   

15.
CD10 has been widely used in cancer diagnosis. We previously demonstrated that its expression in melanoma increased with tumor progression and predicted poor patient survival. However, the mechanism by which CD10 promotes melanoma progression remains unclear. In order to elucidate the role of CD10 in melanoma, we established CD10-overexpressing A375 melanoma cells and performed DNA microarray and qRT–PCR analyses to identify changes in the gene expression profile. The microarray analysis revealed that up-regulated genes in CD10-A375 were mostly involved in cell proliferation, angiogenesis, and resistance to apoptosis; down-regulated genes mostly belonged to the categories associated with cell adhesion and migration. Accordingly, in functional experiments, CD10-A375 showed significantly greater cell proliferation in vitro and higher tumorigenicity in vivo; CD10 enzymatic inhibitors, thiorphan and phosphoramidon, significantly blocked the tumor growth of CD10-A375 in mice. In migration and invasion assays, CD10-A375 displayed lower migratory and invasive capacity than mock-A375. CD10 augmented melanoma cell resistance to apoptosis mediated by etoposide and gemcitabine. These findings indicate that CD10 may promote tumor progression by regulating the expression profiles of genes related to cell proliferation, angiogenesis, and resistance to apoptosis.  相似文献   

16.
Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors – integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.  相似文献   

17.
Metastasis is major cause of malignant cancer-associated mortality. Fucoxanthin has effect on various pharmacological activities including anti-cancer activity. However, the inhibitory effect of fucoxanthin on cancer metastasis remains unclear. Here, we show that fucoxanthin isolated from brown alga Saccharina japonica has anti-metastatic activity. To check anti-metastatic properties of fucoxanthin, in vitro models including assays for invasion, migration, actin fiber organization and cancer cell–endothelial cell interaction were used. Fucoxanthin inhibited the expression and secretion of MMP-9 which plays a critical role in tumor invasion and migration, and also suppressed invasion of highly metastatic B16-F10 melanoma cells as evidenced by transwell invasion assay. In addition, fucoxanthin diminished the expressions of the cell surface glycoprotein CD44 and CXC chemokine receptor-4 (CXCR4) which play roles in migration, invasion and cancer–endothelial cell adhesion. Fucoxanthin markedly suppressed cell migration in wound healing assay and inhibited actin fiber formation. The adhesion of B16-F10 melanoma cells to the endothelial cells was significantly inhibited by fucoxanthin. Moreover, in experimental lung metastasis in vivo assay, fucoxanthin resulted in significant reduction of tumor nodules. Taken together, we demonstrate, for the first time, that fucoxanthin suppresses metastasis of highly metastatic B16-F10 melanoma cells in vitro and in vivo.  相似文献   

18.
19.
Malignant transformation is characterized by a phenotype “switch” from E- to N-cadherin – a major hallmark of epithelial to mesenchymal transition (EMT). The increased expression of N-cadherin is commonly followed by a growing capacity for migration as well as resistance to apoptosis. Integrin Linked Kinase (ILK) is a key molecule involved in EMT and progression of cancer cells. ILK is known as a major signaling mediator involved in cadherin switch, but the specific mechanism through which ILK modulates N-cadherin expression is still not clear.Studies were carried out on human melanoma WM793 and 1205Lu cell lines. Expression of proteins was analyzed using PCR and Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Subcellular localization of protein was studied using the ProteoExtract Subcellular Kit and Western blot analysis.Our data show that ILK knockdown by siRNA did suppress N-cadherin expression in melanoma, but only at the protein level. The ILK silencing-induced decrease of N-cadherin membranous expression in melanoma highlights the likely crucial role of ILK in the coordination of membrane trafficking through alteration of Rab expression. It is essential to understand the molecular mechanism of increased N-cadherin expression in cancer to possibly use it in the search of new therapeutic targets.  相似文献   

20.
Rat C-CAM is a ubiquitous, transmembrane and carcinoembryonic antigen related cell adhesion molecule. The human counterpart is known as biliary glycoprotein (BGP) or CD66a. It is involved in different cellular functions ranging from intercellular adhesion, microbial receptor activity, signaling and tumor suppression. In the present study N-glycosylation of C-CAM immunopurified from rat liver was analyzed in detail. The primary sequence of rat C-CAM contains 15 potential N-glycosylation sites. The N-glycans were enzymatically released from glycopeptides, fluorescently labeled with 2-aminobenzamide, and separated by two-dimensional HPLC. Oligosaccharide structures were characterized by enzymatic sequencing and MALDI-TOF-MS. Mainly bi- and triantennary complex structures were identified. The presence of type I and type II chains in the antennae of these glycans results in heterogeneous glycosylation of C-CAM. Sialylation of the sugars was found to be unusual; bi- and triantennary glycans contained three and four sialic acid residues, respectively, and this linkage seemed to be restricted to the type I chain in the antennae. Approximately 20% of the detected sugars contain these unusual numbers of sialic acids. C-CAM is the first transmembrane protein found to be oversialylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号