首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Delayed Product Differentiation (DPD) can reduce the manufacturing complexities arising due to the proliferation of products variety. A new optimization model constructs the optimum layout of delayed differentiation assembly lines for a mix of products to be manufactured by the same system and optimizes the position of the differentiation points. This model employs a classification tool (Cladistics) used in biological analysis and modifies it for use in planning DPD assembly lines configurations in order to incorporate the assembly precedence constraints, required production rates of different product variants and existing production capacity of work stations. The optimum layout configuration ensures that the quantities required of different products are produced on the same line; while achieving balance, minimizing duplication of stations and maximizing the overall system utilization. The developed model has been applied to a group of automobile engine accessories normally assembled on different lines. The use of Cladistics to analyze product variants that are candidates for delayed assembly is an original approach for designing the assembly line layout and identifying the best differentiation points. It also helps rationalize the design of product variants and their features to further delay their assembly differentiation and achieve economy of scale without affecting their functionality.  相似文献   

2.
Frequency of model change and the vast amounts of time and cost required to make a changeover, also called time-based competition, has become a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other industries. This paper discusses the concept of time-based competition in manufacturing and design based on a review of on-going research related to stream-of-variation (SOVA or SoV) methodology. The SOVA methodology focuses on the development of modeling, analysis, and control of dimensional variation in complex multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries. The presented methodology can help in eliminating costly trial-and-error fine-tuning of new-product assembly processes attributable to unforeseen dimensional errors throughout the assembly process from design through ramp-up and production. Implemented during the product design phase, the method will produce math-based predictions of potential downstream assembly problems, based on evaluations of the design and a large array of process variables. By integrating product and process design in a pre-production simulation, SOVA can head off individual assembly errors that contribute to an accumulating set of dimensional variations, which ultimately result in out-of-tolerance parts and products. Once in the ramp-up stage of production, SOVA will be able to compare predicted misalignments with actual measurements to determine the degree of mismatch in the assemblies, diagnose the root causes of errors, isolate the sources from other assembly steps, and then, on the basis of the SOVA model and product measurements, recommend solutions.  相似文献   

3.
In today’s markets, non-uniform, customized products complicate the manufacturing processes significantly. In this paper, we propose a cellular manufacturing system design model to manage product variety by integrating with the technology selection decision. The proposed model determines the product families and machine groups while deciding the technology of each cell individually. Hedging against changing market dynamics leads us to the use of flexible machining systems and dedicated manufacturing systems at the same facility. In order to integrate the market characteristics in our model, we proposed a new cost function. Further, we modified a well known similarity measure in order to handle the operational capability of the available technology. In the paper, our hybrid technology approach is presented via a multi-objective mathematical model. A filtered-beam based local search heuristic is proposed to solve the problem efficiently. We compare the proposed approach with a dedicated technology model and showed that the improvement with the proposed hybrid technology approach is greater than 100% in unstable markets requiring high product varieties, regardless of the volumes of the products.  相似文献   

4.
This article presents an approach toward product design for environment (DfE) at the level that integrates environmental hazard analysis with models of transformation processes. As a complementary analysis tool to life-cycle assessment (LCA), this method would support detailed design decisions through modeling of a "process chain" for a subset of the product's life cycle. The building blocks for this approach are a set of unit process models that can convert process and design parameters into estimates for energy utilization, production scrap, and ancillary waste flows. These values for quantity of environmental releases can be integrated using a multicriiteria environmental hazard evaluation methodology that can estimate the "qualrty" of environmental releases. Finally, the waste information can be used to support a design model that can link design parameters to material, process, and operational parameter selection. A case study illustrating printed circuit board (PCB) assembly is presented to show process chain implementation in manufacturing applications.  相似文献   

5.
A new technique is described for the formation of ligand-targeted liposomes that can be used with whole antibodies, antibody fragments, peptides or other ligands. The ligands are coupled to polyethylene glycol micelles and then transferred in a simple incubation step from the micelles into the outer monolayer of pre-formed, drug-loaded liposomes. This versatile method allows a combinatorial approach to the design of targeted liposomes that minimises manufacturing complexities, allowing a variety of ligands to be inserted into a variety of pre-formed liposomes containing a variety of drugs. This allows the ligand-targeted therapeutics to be tailored to the needs of individual patients.  相似文献   

6.
Evolvable and Reconfigurable Assembly Systems (RAS) enable enterprises to rapidly respond to changes in today’s increasingly volatile and dynamic global markets. One of the key success factors for the effective use of RAS is methods and tools that can rapidly configure and reconfigure assembly systems driven by changing requirements. The focus of this paper is the development of a suitable equipment model to support the effective design of reconfigurable assembly systems. The work has been motivated by the need to provide solutions for increasing product customisation and volume changes over the product life-cycle that directly impact on the final product assembly. The paper proposes a comprehensive equipment ontology to enable effective decision-making during the design and evaluation of new RAS configurations. The proposed ontology is based on the function-behaviour-structure paradigm, and is formalised to facilitate its application in distributed web-enabled decision-making environments. The equipment configuration and reconfiguration approach and prototype decision-making environment are illustrated using system design examples.  相似文献   

7.
Methodology for developing gate-to-gate Life cycle inventory information   总被引:1,自引:0,他引:1  
Life Cycle Assessment (LCA) methodology evaluates holistically the environmental consequences of a product system or activity, by quantifying the energy and materials used, the wastes released to the environment, and assessing the environmental impacts of those energy, materials and wastes. Despite the international focus on environmental impact and LCA, the quality of the underlying life cycle inventory data is at least as, if not more, important than the more qualitative LCA process. This work presents an option to generate gate-to-gate life cycle information of chemical substances, based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of a Life Cycle Inventory (LCI), the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle to gate evaluation. The goal of this article is to explain the methodology rather than to provide a tutorial on the techniques used. This methodology aims to help the LCA practitioner to obtain a fair and transparent estimate of LCI data when the information is not readily available from industry or literature. Results of gate-to-gate life cycle information generated using the cited methodology are presented as a case study. It has been our experience that both LCI and LCA information provide valuable means of understanding the net environmental consequence of any technology. The LCI information from this methodology can be used more directly in exploring engineering and chemistry changes to improve manufacturing processes. The LCA information can be used to set broader policy and to look at more macro improvements for the environment.  相似文献   

8.
The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.  相似文献   

9.
Building manufacturing creates product value like building space, and induces severe environmental influence at the same time. The idea of eco-efficiency (EE) can link a product or service value and the corresponding environmental influence together, but there has been little research that implements such idea on building manufacturing, such as the green building rating system of the comprehensive assessment system for building environmental efficiency (CASBEE) in Japan and the EcoEffect in Sweden. This paper proposes an emergy (spelled with an “m”) analysis-based methodology for EE evaluation of building manufacturing, where the building space (in cubic size) and the emergy amount of building manufacturing are selected as the indicators of product value and the environmental influence, respectively. Six residential buildings that include multi-storeys, moderate high-rises and high rises are selected averagely from two Chinese famous cities, namely Beijing and Shanghai. The evaluation results can provide directions to assess environmental influence and thus to heighten the EE of building manufacturing. The EE evaluation result can even be used as the base of a new green building (or eco-building) rating system.  相似文献   

10.
Modern manufacturing systems are increasingly required to be flexible and adaptable to changing market demands, which adds to their structural and operational complexity. One of the major challenges at the early design stages is to select a manufacturing system configuration that both satisfies the production functional requirements and is easy to operate and manage. A new metric for assessing the structural complexity of manufacturing system configurations is presented in this paper. The proposed complexity metric incorporates the quantity of information using an entropy approach. It accounts for the complexity inherent in the various modules in the manufacturing system through the use of an index derived from a newly developed manufacturing systems classification code. The code captures the effect of various component types and technologies used in a manufacturing system on the system’s structural complexity. The presented metric would be helpful in selecting the least complex manufacturing system configuration that meets the requirements. An engine cylinder head production system is used to illustrate the application of the proposed methodology in comparing feasible but different manufacturing system configurations capable of producing the cylinder head based on their structurally inherent complexity.  相似文献   

11.
This article presents a generic method to assist product and process designers in measuring resource use and environmental discharges based on the relationships between process flow inputs and outputs and their activity levels. It combines activity-based costing from conventional accounting with life-cycle inventories. The method is demonstrated on four electronic assembly product and process designs. The demonstration exhibits the disaggregation and allocation of costs and effluents from various manufacturing operations. This activity-based environmental allocation approach may be integrated with inventory analysis-the first step in full and streamlined life-cycle assessments, design for environment evaluation methods, environmental management activities, and new production planning models that consider environmental impacts.  相似文献   

12.
To date, numerous simplified Life Cycle Assessment methods and techniques have been developed to reduce complexities associated with practical application. However, these methods often identify critical elements according to subjective considerations. In this paper, we develop and apply a new type of Life Cycle Inventory method — Component Manufacturing Analysis (CMA) — that is easy to implement and less arbitrary. Application of CMA requires identification of all product components and their associated weights, which are then entered into a factory-type database. Because the factory database has a rigorous yet generic structure and because calculation is done automatically, the application of CMA tends to be less arbitrary and more complete than other simplified methods. Results of a case study on beverage vending machines show that the manufacturing stage is a significant phase in the whole life-cycle inventory of a product. We conclude that CMA shows promise for further development and future application.  相似文献   

13.
The fulfillment of individual customer affective needs may award the producer extra premium in gaining a competitive edge. This entails a number of technical challenges to be addressed, such as the elicitation, evaluation, and fulfillment of affective needs, as well as the evaluation of affordability of producers to launch the planned products. Mass customization and personalization have been recognized as an effective means to enhance front-end customer satisfaction while maintaining back-end production efficiency. This paper proposes an affective design framework to facilitate decision-making in designing customized product ecosystems. In particular, ambient intelligence techniques are applied to elicit affective customer needs. An analytical model is proposed to support affective design analysis. Utility measure and conjoint analysis are employed to quantify affective satisfaction, while the producer affordability is evaluated using an affordability index. Association rule mining techniques are applied to model the mapping of affective needs to design elements. Configuration design of product ecosystems is optimized with a heuristic genetic algorithm. A case study of Volvo truck cab design is reported with a focus on the customization of affective features. It is demonstrated that the analytical affective design framework can effectively manage the elicitation, analysis, and fulfillment of affective customer needs. Meanwhile, it can account for the manufacturer’s capabilities, which is vital for ensuring a profit margin in the mass customization and personalization endeavor.  相似文献   

14.
A series of simulations aimed at elucidating the self-assembly dynamics of spherical virus capsids is described. This little-understood phenomenon is a fascinating example of the complex processes that occur in the simplest of organisms. The fact that different viruses adopt similar structural forms is an indication of a common underlying design, motivating the use of simplified, low-resolution models in exploring the assembly process. Several versions of a molecular dynamics approach are described. Polyhedral shells of different sizes are involved, the assembly pathways are either irreversible or reversible and an explicit solvent is optionally included. Model design, simulation methodology and analysis techniques are discussed. The analysis focuses on the growth pathways and the nature of the intermediate states, properties that are hard to access experimentally. Among the key observations are that efficient growth proceeds by means of a cascade of highly reversible stages, and that while there are a large variety of possible partial assemblies, only a relatively small number of strongly bonded configurations are actually encountered.  相似文献   

15.
The development of design systems which ensure economic feasibility has been the focus of recent research in the manufacturing area. Traditional design and justification approaches have been cited as having shortcomings; thus, there have been a variety of modifications and enhancements developed. An approach that is conceptually different from the traditional approaches seeks the integration of the economic analysis within the design process. We denote this approach as thedesign justification method. This paper reviews literature related to the explicit and implicit integration of economic factors in the manufacturing system design process, followed by supporting issues for the implementation of the design justification concept.  相似文献   

16.
A typical biotech process starts with the vial of the cell bank, ends with the final product and has anywhere from 15 to 30 unit operations in series. The total number of process variables (input and output parameters) and other variables (raw materials) can add up to several hundred variables. As the manufacturing process is widely accepted to have significant impact on the quality of the product, the regulatory agencies require an assessment of process comparability across different phases of manufacturing (Phase I vs. Phase II vs. Phase III vs. Commercial) as well as other key activities during product commercialization (process scale-up, technology transfer, and process improvement). However, assessing comparability for a process with such a large number of variables is nontrivial and often companies resort to qualitative comparisons. In this article, we present a quantitative approach for assessing process comparability via use of chemometrics. To our knowledge this is the first time that such an approach has been published for biotech processing. The approach has been applied to an industrial case study involving evaluation of two processes that are being used for commercial manufacturing of a major biosimilar product. It has been demonstrated that the proposed approach is able to successfully identify the unit operations in the two processes that are operating differently. We expect this approach, which can also be applied toward assessing product comparability, to be of great use to both the regulators and the industry which otherwise struggle to assess comparability.  相似文献   

17.
大肠杆菌作为一种重要的模式工业微生物,在医药、化工、农业等方面具有广泛的应用。近30年来,多种代谢工程改造的新策略和新技术,被用于设计、构建和优化大肠杆菌化学品细胞工厂,极大地提高了生物法合成化学品的生产速率和产量。文中将从大肠杆菌途径设计、合成途径创建与优化和细胞全局优化三个方面,对大肠杆菌代谢改造起重要推动作用的技术进行综述,并对大肠杆菌代谢工程中关键技术的应用进行了展望。  相似文献   

18.
A general methodology is presented for the validation of assays used for testing combination vaccines. The presentation is detailed and technical as our intention is to address challenges that we have encountered in the design and statistical analysis of assay validation studies. There are several noteworthy features which render the approach particularly useful in practice. It employs a statistical experimental design approach to the investigation of assay ruggedness with respect to manufacturing variability; it makes use of the assay variability results to determine the level of test-run replication necessary to achieve precision compatible with the product specifications; and, it provides a generic approach to assay validation.With combination vaccines, as with other pharmaceuticals, the analytical methods for release and stability must be validated early in the development programme Several things, though, distinguish this task with combination vaccines: (1) assays are typically pre-existing and often have been validated for use with an established sample matrix, e.g. a monovalent formulation; (2) sample matrices are complex and therefore more subject to manufacturing variability and more likely to cause assay interferences; and (3) the analytical workload is considerable due to the number of antigens.The methodology presented here was developed jointly by Merck Research Laboratories (West Point, PA) and Pasteur Mérieux Connaught, Inc. (Swiftwater, PA). Many of the issues discussed here have application outside of combination vaccines and are common features of all assay validations.  相似文献   

19.
To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.KEY WORDS: design of experiments, extractables, injection molding, leachables, process parameters, quality by design  相似文献   

20.
Evolution of advanced manufacturing technologies and the new manufacturing paradigm has enriched the computer integrated manufacturing (CIM) methodology. The new advances have put more demands for CIM integration technology and associated supporting tools. One of these demands is to provide CIM systems with better software architecture, more flexible integration mechanisms, and powerful support platforms. In this paper, we present an integrating infrastructure for CIM implementation in manufacturing enterprises to form an integrated automation system. A research prototype of an integrating infrastructure has been developed for the development, integration, and operation of integrated CIM system. It is based on the client/server structure and employs object-oriented and agent technology. System openness, scalability, and maintenance are ensured by conforming to international standards and by using effective system design software and management tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号