首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

2.
Ultraviolet (UV) B irradiation decreases blood adiponectin levels, but the mechanism is not well understood. This study investigated how UVB irradiation reduces adiponectin expression in ovarial adipose tissues. Female Hos:HR-1 hairless mice were exposed to UVB (1.6 J/cm2) irradiation and were killed 24 h later. UVB irradiation decreased the adiponectin protein level in the serum and the adiponectin mRNA level in ovarial adipose tissues. UVB irradiation also decreased the mRNA levels of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP) α, C/EBPβ, and fatty acid binding protein 4 (aP2) in ovarial adipose tissues. In contrast, UVB irradiation increased the mRNA levels of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 in ovarial adipose tissues. In the serum and liver, the levels of serum amyloid A (SAA), involved in PPARγ, C/EBPα, C/EBPβ, aP2, IL-6, and MCP-1 regulation, increased after UVB irradiation. The SAA gene is regulated by IL-1β, IL-6, and tumor necrosis factor-α, but only IL-6 expression increased in the liver after UVB irradiation. Additionally, in the liver, hypothalamus, and epidermis, UVB irradiation increased the expression of calcitonin gene-related peptide (CGRP), which upregulates SAA in the liver. Collectively, our results suggest that the CGRP signal induced by skin exposure to UVB transfers to the liver, possibly through the brain, and increases SAA production via IL-6 in the liver. In turn, serum SAA acts in an endocrine manner to decreases the serum adiponectin level by downregulating factors that regulate adiponectin expression in adipose tissues.  相似文献   

3.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

4.
An influx of neutrophils followed a short time later by an influx of macrophages to the infected site plays a key role in innate immunity against Escherichia coli infection. We found in this study that Vdelta1-/- mice exhibited impaired accumulation of peritoneal macrophages but not neutrophils and delayed bacterial clearance after i.p. inoculation with E. coli. Peritoneal gammadelta T cells from E. coli-infected wild-type mice produced CCL3/MIP-1alpha and CCL5/RANTES in response to gammadelta TCR triggering in vitro, whereas such production was not evident in gammadelta T cells from E. coli-infected Vdelta1-/- mice. Neutralization of CCL3/MIP-1alpha by a specific mAb in vivo significantly inhibited the accumulation of macrophages in the peritoneal cavity after E. coli infection, resulting in exacerbated bacterial growth in the peritoneal cavity. These results suggest that Vdelta1+ gammadelta T cells bridge a gap between neutrophils and macrophages in innate immunity during E. coli infection mediated by production of CC chemokines, enhancing macrophage trafficking to the site of infection.  相似文献   

5.
Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling by inhibiting the JAK-STAT signal transduction pathway, but their role in innate immunity remains to be investigated. In the present study, we demonstrate that overexpression of SOCS5 in T cells augments innate immunity during septic peritonitis induced by cecal ligation and puncture (CLP). Mice with a cell-specific overexpression of SOCS5 in T cells (SOCS5 transgenic (Tg)) were resistant to the lethality relative to the wild-type (WT) mice. This was most likely due to the enhanced innate immunity in SOCS5Tg mice, as bacterial burden in SOCS5Tg mice was significantly lower than WT mice. Accumulation of neutrophils and macrophages was augmented in SOCS5Tg mice, an event that was accompanied by increased peritoneal levels of IL-12, IFN-gamma, and TNF-alpha. In vitro bactericidal activities of macrophages and neutrophils were enhanced in SOCS5Tg mice. Both neutrophils and macrophages from WT mice adopted enhanced bacterial killing activity when cocultured with CD4+ T cells from SOCS5Tg mice, relative to CD4+ T cells from WT mice. Adoptive transfer of SOCS5Tg-CD4+ T cells into T- and B cell-deficient RAG-2(-/-) mice resulted in augmented leukocyte infiltration and increased peritoneal levels of IL-12, IFN-gamma, and TNF-alpha after CLP, as compared with the controls. Furthermore, CLP-induced bacterial burden in RAG-2(-/-) mice harboring SOCS5Tg-CD4+ T cells was significantly reduced relative to the controls. These findings provide evidence that intervention of SOCS5 expression in T cells affects innate immunity, which highlight a novel role of T cells during sepsis.  相似文献   

6.
UVB irradiation can cause considerable changes in the composition of cells in the skin and in cutaneous cytokine levels. We found that a single exposure of normal human skin to UVB induced an infiltration of numerous IL-4(+) cells. This recruitment was detectable in the papillary dermis already 5 h after irradiation, reaching a peak at 24 h and declining gradually thereafter. The IL-4(+) cells appeared in the epidermis at 24 h postradiation and reached a plateau at days 2 and 3. The number of IL-4(+) cells was markedly decreased in both dermis and epidermis at day 4, and at later time points, the IL-4 expression was absent. The IL-4(+) cells did not coexpress CD3 (T cells), tryptase (mast cells), CD56 (NK cells), and CD36 (macrophages). They did coexpress CD15 and CD11b, showed a clear association with elastase, and had a multilobed nucleus, indicating that UVB-induced infiltrating IL-4(+) cells are neutrophils. Blister fluid from irradiated skin, but not from control skin, contained IL-4 protein as well as increased levels of IL-6, IL-8, and TNF-alpha. In contrast to control cultures derived from nonirradiated skin, a predominant type 2 T cell response was detected in T cells present in primary dermal cell cultures derived from UVB-exposed skin. This type 2 shift was abolished when CD15(+) cells (i.e., neutrophils) were depleted from the dermal cell suspension before culturing, suggesting that neutrophils favor type 2 T cell responses in UVB-exposed skin.  相似文献   

7.
Neutrophils are well known to rapidly migrate to foci of infection, where they exert microbicidal functions. We sought to determine whether neutrophils responding to in vivo infection with the protozoan pathogen Toxoplasma gondii were capable of IL-12 production as suggested by recent in vitro studies. Intraperitoneal infection induced a neutrophil influx by 4 h, accompanied by ex vivo IL-12 p40 and p70 release. Approximately 85% of the neutrophils displayed intracellular stores of IL-12, as determined by flow cytometry and confocal fluorescence microscopy. Neutrophils from IFN-gamma knockout mice also expressed IL-12, ruling out an IFN-gamma-priming requirement. Neither infected nor uninfected peritoneal macrophages displayed intracellular IL-12, but these cells were strongly IL-10(+). Infection per se was unnecessary for IL-12 production because peritoneal and peripheral blood neutrophils from uninfected animals contained IL-12(+) populations. Expression of the granulocyte maturation marker Gr-1 (Ly-6G) was correlated with IL-12 production. Mice depleted of their granulocytes by mAb administration at the time of infection had decreased serum levels of IL-12 p40. These results suggest a model in which neutrophils with prestored IL-12 are rapidly mobilized to an infection site where they are triggered by the parasite to release cytokine. Our findings place neutrophils prominently in the cascade of early events leading to IL-12-dependent immunity to T. gondii.  相似文献   

8.
Tuberculosis is the most important bacterial infection world wide. The causative agent, Mycobacterium tuberculosis survives and proliferates within macrophages. Immune mediators such as interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha) activate macrophages and promote bacterial killing. IFN-gamma is predominantly secreted by innate cells (mainly natural killer (NK) cells) and by T cells upon instruction by interleukin 12 (IL-12) and IL-18. These cytokines are primarily produced by dendritic cells and macrophages in response to Toll-like receptor (TLR) signalling interaction with tubercle bacilli. These signals also induce pro-inflammatory cytokines (including IL-1beta and TNF-alpha), chemokines and defensins. The inflammatory environment further recruits innate effector cells such as macrophages, polymorphonuclear neutrophils (PMN) and NK cells to the infectious foci. This eventually leads to the downstream establishment of acquired T cell immunity which appears to be protective in more than 90% of infected individuals. Robust innate immune activation is considered an essential prerequisite for protective immunity and vaccine efficacy. However, data published so far provide a muddled view of the functional importance of innate immunity in tuberculosis. Here we critically discuss certain aspects of innate immunity, namely PMN, TLRs and NK cells, as characterised in tuberculosis to date, and their contribution to protection and pathology.  相似文献   

9.
The effect of a plum ethanol extract (PEE) on immunity was analyzed. An oral administration of PEE increased the interleukin (IL)-12p40 concentration in the serum and T-cell ratio in the spleen. In vitro studies revealed that PEE stimulated IL-12p70 production in peritoneal macrophages and natural killer activity. These findings suggest that PEE enhanced the immune function by stimulating innate immune cells.  相似文献   

10.
IL-33 is known to play an important role in Th2 immunity. In this study, we investigated the effect of IL-33 pretreatment on anti-fungal response using an acute Candida albicans peritoneal infection model. IL-33 pretreatment induced a rapid fungal clearance and markedly reduced the C. albicans infection-associated mortality. The priming effect of IL-33 occurred during multiple steps of the neutrophil-mediated anti-fungal response. First, the anti-fungal effect occurred due to the rapid and massive recruitment of neutrophils to the site of infection as a result of the release of CXCR2 chemokines by peritoneal macrophages and by reversal of the TLR-induced reduction of CXCR2 expression in neutrophils during IL-33 priming. Second, conditioning of neutrophils by IL-33 activated the TLR and dectin-1 signaling pathways, leading to the upregulation of complement receptor 3 expression induced by C. albicans. Upregulated CR3 in turn increased the phagocytosis of opsonized C. albicans and resulted in the production of high levels of reactive oxygen species and the subsequent enhanced killing activity of neutrophils. Taken together, our results suggest that IL-33 can regulate the anti-fungal activity of neutrophils by collaborative modulation of the signaling pathways of different classes of innate immune receptors.  相似文献   

11.
Interaction of mycoplasmas and phagocytes   总被引:2,自引:0,他引:2  
Aspects of the interaction of certain mycoplasmas with macrophages and neutrophils in vivo and in vitro have been studied using two systems, one involving M. pulmonis in mice and the other involving M. bovis with bovine leucocytes. Studies with M. pulmonis indicated that the disappearance of viable organisms from the peritoneal cavity was not enhanced in SPF mice in which a peritoneal exudate rich in neutrophils had been induced. However, viable M. pulmonis organisms disappeared more rapidly from the peritoneal cavities with exudates containing increased numbers of macrophages. Experiments in vitro studied the opsonic effect of bovine IgG isotypes for bovine neutrophils and alveolar macrophages. Both IgG1 and IgG2 promoted killing of M. bovis by alveolar macrophages but IgG2 was more effective than IgG1 at promoting mycoplasma killing by neutrophils. Further studies in vitro indicated that certain bovine mycoplasma could inhibit killing of Escherichia coli by bovine neutrophils.  相似文献   

12.
Based on our recent observation that enhanced IL-18 expression positively correlates with malignant skin tumors, such as SCC and melanoma, we examined the possible role of UVB, known to be associated with skin cancer development, in the enhancement of IL-18 production using primary human epidermal keratinocytes and human keratinocyte cell line HaCaT. After cells were exposed to UVB irradiation in vitro, IL-18 production was examined by Northern blot analysis and ELISA, and it was found that IL-18 production is enhanced by UVB irradiation in a dose- and time-dependent manner. In addition, we confirmed that it is functionally active form of IL-18 using the inhibitor of caspase-1. The effect of UVB irradiation was blocked by antioxidant, N-acetyl-L-cysteine (NAC), which suggested the involvement of reactive oxygen intermediates (ROI) in the signal transduction of UVB irradiation-enhanced IL-18 synthesis. We also found that UVB irradiation increased AP-1 binding activity by using EMSA with AP-1-specific oligonucleotide. Furthermore, inhibitors of UVB-induced AP-1 activity, such as PD98059, blocked enhanced IL-18 production, indicating that AP-1 activation is required for UVB-induced IL-18 production. Taken together, our results suggest that UVB irradiation-enhanced IL-18 production is selectively mediated through the generation of ROI and the activation of AP-1.  相似文献   

13.
We have reported that alpha 1-acid glycoprotein (AGP) gene expression was induced in lung tissue and in alveolar type II cells during pulmonary inflammatory processes, suggesting that local production of this immunomodulatory protein might contribute to the modulation of inflammation within the alveolar space. Because AGP may also be secreted by other cell types in the alveolus, we have investigated the expression and the regulation of the AGP gene in human and rat alveolar macrophages. Spontaneous AGP secretion by alveolar macrophages was increased 4-fold in patients with interstitial lung involvement compared with that in controls. In the rat, immunoprecipitation of [35S]methionine-labeled cell lysates showed that alveolar macrophages synthesize and secrete AGP. IL-1 beta had no effect by itself, but potentiated the dexamethasone-induced increase in AGP production. RNase protection assay demonstrated that AGP mRNA, undetectable in unstimulated cells, was induced by dexamethasone. Conditioned medium from LPS-stimulated macrophages as well as IL-1 beta had no effect by themselves, but potentiated the dexamethasone-induced increase in AGP mRNA levels. In addition to cytokines, PGE2 as well as dibutyryl cAMP increased AGP mRNA levels in the presence of dexamethasone. When AGP expression in other cells of the monocyte/macrophage lineage was examined, weak and no AGP production by human blood monocytes and by rat peritoneal macrophages, respectively, were observed. Our data showed that 1) AGP expression is inducible specifically in alveolar macrophages in vivo and in vitro; and 2) PGE2 and cAMP act as new positive stimuli for AGP gene expression.  相似文献   

14.
Rats were subjected to acute lung injury by the intra-alveolar formation of IgG immune complexes of bovine serum albumin (BSA) and anti-BSA. In this model of injury, complement activation occurs and large numbers of neutrophils invade the interstitium and alveolar space. In the present study, animals were treated with intratracheal catalase concomitantly with anti-BSA or after a lag period of 5-120 min. Catalase treatment at time-zero or at 5 min post injury failed to prevent lung injury as indicated by permeability change, histological features, and neutrophil influx. However, treatment after a delay of 15-30 min (but not 120 min) afforded substantial protection. Consistent with past findings [19], lung injury was accompanied by an accumulation of matrix metalloproteinase 9 (MMP-9) in bronchoalveolar lavage (BAL) fluid. There was a strong correlation between inhibition of injury and reduction in MMP-9 levels. In vitro studies conducted in parallel revealed that unstimulated alveolar macrophages did not produce measurable MMP-9, while there was a large induction following exposure to the same immune complexes that initiated injury in vivo. MMP-2 was also slightly upregulated under the same conditions. Concomitant treatment with catalase greatly inhibited MMP-9 production by macrophages in response to immune complexes, but this treatment had little effect on basal production of either MMP-9 or MMP-2 by macrophage. The same concentration of catalase that suppressed MMP-9 elaboration also inhibited the production of tumor necrosis factor alpha. In contrast, when neutrophils were treated with catalase and then exposed to immune complexes, the antioxidant failed to prevent the release of either MMP-2 or MMP-9. Taken together, these findings demonstrate that antioxidant treatment interferes with elaboration of MMPs by alveolar macrophages. Protection against lung injury is correlated with reduction in MMP levels in the BAL fluid.  相似文献   

15.
IL-9/Th9 responses are recently found to be important for innate and adaptive immunity particularly in parasitic infections. To date, the study on the role of IL-9 in bacterial infections is limited and the reported data are contradictory. One reported function of IL-9/Th9 is to modulate Th1/Th17 responses. Since our and others’ previous work has shown a critical role of Th1 and Th17 cells in host defense against chlamydial lung infection, we here examined the role of IL-9 responses in Chlamydia muridarum (Cm) lung infection, particularly its effect on Th1 and Th17 responses and outcome infection. Our data showed quick but transient IL-9 production in the lung following infection, peaking at day 3 and back to baseline around day 7. CD4+ T cell was the major source of IL-9 production in the lung infection. Blockade of endogenous IL-9 using neutralizing antibody failed to change Interferon-γ (IFN-γ) and IL-17 production by cultured spleen mononuclear cells isolated from Cm infected mice. Similarly, in vivo neutralization of IL-9 failed to show significant effect on T cell (Th1 and Th17) and antibody responses (IgA, IgG1 and IgG2a). Consistently, the neutralization of IL-9 had no significant effect on disease process, including body weight change, bacterial burden and histopathological score. The data suggest that IL-9 production following chlamydial lung infection is redundant for host defense against the intracellular bacteria.  相似文献   

16.
Periapical bone resorption occurs following infection of the dental pulp and is mediated mainly by IL-1alpha in the murine model. The production and activity of IL-1alpha is modulated by a network of regulatory cytokines, including those produced by Th1 (pro-inflammatory) and Th2 (anti-inflammatory) subset T cells. This study was designed to assess the functional role of the Th2-type cytokines IL-4 and IL-10 in infection-stimulated bone resorption in vivo. The dental pulps of the first molars were exposed and infected with a mixture of four common endodontic pathogens, and bone destruction was determined by micro-computed tomography at sacrifice on day 21. The results demonstrate that IL-10(-/-) mice had significantly greater infection-stimulated bone resorption in vivo compared with wild-type mice (p < 0.001), whereas IL-4(-/-) exhibited no increased resorption. IL-10(-/-) had markedly elevated IL-1alpha production within periapical inflammatory tissues (>10-fold) compared with wild type (p < 0.01), whereas IL-4(-/-) exhibited decreased IL-1alpha production (p < 0.05). IL-10 also suppressed IL-1alpha production by macrophages in a dose-dependent fashion in vitro, whereas IL-4 had weak and variable effects. We conclude that IL-10, but not IL-4, is an important endogenous suppressor of infection-stimulated bone resorption in vivo, likely acting via inhibition of IL-1alpha expression.  相似文献   

17.
18.
A role for IL-18 in neutrophil activation   总被引:19,自引:0,他引:19  
IL-18 expression and functional activity has been identified in several autoimmune and infectious diseases. To clarify the potential role of IL-18 during early innate immune responses, we have explored the capacity of IL-18 to activate neutrophils. Human peripheral blood-derived neutrophils constitutively expressed IL-18R (alpha and beta) commensurate with the capacity to rapidly respond to IL-18. IL-18 induced cytokine and chemokine release from neutrophils that was protein synthesis dependent, up-regulated CD11b expression, induced granule release, and enhanced the respiratory burst following exposure to fMLP, but had no effect upon the rate of neutrophil apoptosis. The capacity to release cytokine and chemokine was significantly enhanced in neutrophils derived from rheumatoid arthritis synovial fluid, indicating differential responsiveness to IL-18 dependent upon prior neutrophil activation in vivo. Finally, IL-18 administration promoted neutrophil accumulation in vivo, whereas IL-18 neutralization suppressed the severity of footpad inflammation following carrageenan injection. The latter was accompanied by reduction in tissue myeloperoxidase expression and suppressed local TNF-alpha production. Together, these data define a novel role for IL-18 in activating neutrophils and thereby promoting early innate immune responses.  相似文献   

19.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

20.
Autocrine activation of APC by IL-12 has recently been revealed; we demonstrate here that inducible expression of Stat4 in APC is central to this process. Stat4 is induced in dendritic cells (DC) in a maturation-dependent manner and in macrophages in an activation-dependent manner. Stat4 levels directly correlate with IL-12-dependent IFN-gamma production by APC as well as IFN-gamma production by DC during Ag presentation. The Th2 cytokines IL-4 and IL-10 suppress Stat4 induction in DC and macrophages when present during maturation and activation, respectively, diminishing IFN-gamma production. In contrast, IL-4 has no effect on Stat4 levels in mature DC and actually augments IFN-gamma production by DC during Ag presentation, indicating that IL-4 acts differently in a spatiotemporal manner. The functional importance of Stat4 is evident in Stat4(-/-) DC and macrophages, which fail to produce IFN-gamma. Furthermore, Stat4(-/-) macrophages are defective in NO production in response to IL-12 and are susceptible to TOXOPLASMA: Autocrine IL-12 signaling is required for high-level IFN-gamma production by APC at critical stages in both innate and adaptive immunity, and the control of Stat4 expression is likely an important regulator of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号