首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty rhizobial strains were isolated from Lotus creticus, L. pusillus and Bituminaria bituminosa endemic to Tunisia, and they belonged to the Mesorhizobium and Ensifer genera based on 16S rDNA sequence phylogeny. According to the concatenated recA and glnII sequence-based phylogeny, four Bituminaria isolates Pb5, Pb12, Pb8 and Pb17 formed a monophyletic group with Mesorhizobium chacoense ICMP14587T, whereas four other strains Pb1, Pb6, Pb13 and Pb15 formed two separate lineages within the Ensifer genus. Among the L. pusillus strains, Lpus9 and Lpus10 showed a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas six other strains could belong to previously undescribed Mesorhizobium and Ensifer species. For L. creticus strains, Lcus37, Lcus39 and Lcus44 showed 98% sequence identity with Ensifer aridi JNVU TP6, and Lcus42 shared a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas another four strains were divergent from all the described Ensifer and Mesorhizobium species. The analysis of the nodC gene-based phylogeny identified four symbiovar groups; Mesorhizobium sp. sv. anthyllidis (Lpus3 and Lpus11 from L. pusillus, Lcus43 from L. creticus), Ensifer medicae sv. meliloti (four strains from L. creticus and two strains from L. pusillus), E. meliloti sv. meliloti (four from L. creticus, four from L. pusillus and four from B. bituminosa). In addition, four B. bituminosa strains (Pb5, Pb8, Pb12, and Pb17) displayed a distinctive nodC sequence distant from those of other symbiovars described to date. According to their symbiotic gene sequences and host range, the B. bituminosa symbionts (Pb5, Pb8, Pb12 and Pb17) would represent a new symbiovar of M. chacoense for which sv. psoraleae is proposed.  相似文献   

2.
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.  相似文献   

3.
A collection of rhizobia isolated from Acacia tortilis subsp. raddiana nodules from various arid soils in Tunisia was analyzed for their diversity at both taxonomic and symbiotic levels. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at 40 °C. Genetic characterization emphasized that most of the strains (42/50) belong to the genus Ensifer, particularly the species Ensifer meliloti, Ensifer garamanticus, and Ensifer numidicus. Symbiotic properties of isolates showed diversity in their capacity to nodulate their host plant and to fix atmospheric nitrogen. The most effective isolates were closely related to E. garamanticus. Nodulation tests showed that 3 strains belonging to Mesorhizobium genus failed to renodulate their host plant, which is surprising for symbiotic rhizobia. Furthermore, our results support the presence of non-nodulating endophytic bacteria belonging to the Acinetobacter genus in legume nodules.  相似文献   

4.
Gene flow between genetically differentiated populations can maintain variation in species interactions, especially when population structure is congruent between interacting species. However, large‐scale empirical comparisons of the population structure of interacting species are rare, particularly in positive interspecific interactions (mutualisms). One agriculturally and ecologically important mutualism is the partnership between legume plants and rhizobia. Through characterizing and comparing the population genomic structure of the legume Medicago lupulina and two rhizobial species (Ensifer medicae and E. meliloti), we explored the spatial scale of population differentiation between interacting partners in their introduced range in North America. We found high proportions of E. meliloti in southeastern populations and high proportions of E. medicae in northwestern populations. Medicago lupulina and the Ensifer genus showed similar patterns of spatial genetic structure (isolation by distance). However, we detected no evidence of isolation by distance or population structure within either species of bacteria. Genome‐wide nucleotide diversity within each of the two Ensifer species was low, suggesting limited introduction of strains, founder events, or severe bottlenecks. Our results suggest that there is potential for geographically structured coevolution between M. lupulina and the Ensifer genus, but not between M. lupulina and either Ensifer species.  相似文献   

5.
Genista saharae is an indigenous shrub legume that spontaneously grows in the northeastern Algerian Sahara. It is known for efficient dune fixation and soil preservation against desertification, due to its drought tolerance and its contribution to sustainable nitrogen resources implemented by biological N2-fixation. In this study, the root nodule bacteria of G. saharae were investigated using phenotypic and phylogenetic characterization. A total of 57 rhizobial strains were isolated from nodules from several sites in the hyper-arid region of Metlili and Taibet (east Septentrional Sahara). They all nodulate G. saharae species but they differed in their symbiotic efficiency and effectiveness. The genetic diversity was assessed by sequencing three housekeeping genes (atpD, recA and 16S rRNA). The majority of isolates (81 %) belonged to the genus Ensifer (previously Sinorhizobium), represented mainly by the species Ensifer meliloti. The next most abundant genera were Neorhizobium (17 %) with 3 different species: N. alkalisoli, N. galegae and N. huautlense and Mesorhizobium (1.75 %) represented by the species M. camelthorni. Most of the isolated strains tolerated up to 4 % (w/v) NaCl and grew at 45 °C. This study is the first report on the characterization of G. saharae microsymbionts in the Algerian Sahara.  相似文献   

6.
Nodulation and genetic diversity of native rhizobia nodulating Lathyrus cicera plants grown in 24 cultivated and marginal soils collected from northern and central Tunisia were studied. L. cicera plants were nodulated and showed the presence of native rhizobia in 21 soils. A total of 196 bacterial strains were selected and three different ribotypes were revealed after PCR-RFLP analysis. The sequence analysis of the rrs and two housekeeping genes (recA and thrC) from 36 representative isolates identified Rhizobium laguerreae as the dominant (53%) rhizobia nodulating L. cicera. To the best of our knowledge, this is the first time that this species has been reported among wild populations of the rhizobia-nodulating Lathyrus genus. Twenty-five percent of the isolates were identified as R. leguminosarum and isolates LS11.5, LS11.7 and LS8.8 clustered with Ensifer meliloti. Interestingly, five isolates (LS20.3, LS18.3, LS19.10, LS1.2 and LS21.20) were segregated from R. laguerreae and clustered as a separate clade. These isolates possibly belong to new species. According to nodC and nodA phylogeny, strains of R. laguerreae and R. leguminosarum harbored the symbiotic genes of symbiovar viciae and clustered in three different clades showing heterogeneity within the symbiovar. Strains of E. meliloti harbored symbiotic genes of Clade V and induced inefficient nodules.  相似文献   

7.
The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.  相似文献   

8.
Rhizobia nodulating native Astragalus and Oxytropis spp. in Northern Europe are not well-studied. In this study, we isolated bacteria from nodules of four Astragalus spp. and two Oxytropis spp. from the arctic and subarctic regions of Sweden and Russia. The phylogenetic analyses were performed by using sequences of three housekeeping genes (16S rRNA, rpoB and recA) and two accessory genes (nodC and nifH). The results of our multilocus sequence analysis (MLSA) of the three housekeeping genes tree showed that all the 13 isolates belonged to the genus Mesorhizobium and were positioned in six clades. Our concatenated housekeeping gene tree also suggested that the isolates nodulating Astragalus inopinatus, Astragalus frigidus, Astragalus alpinus ssp. alpinus and Oxytropis revoluta might be designated as four new Mesorhizobium species. The 13 isolates were grouped in three clades in the nodC and nifH trees. 15N analysis suggested that the legumes in association with these isolates were actively fixing nitrogen.  相似文献   

9.
In the present study, a total of 154 bacterial strains isolated from nodules of eighteen Vicia species mainly grown in the temperate Chinese provinces were characterized by ARDRA, ITS PCR–RFLP, BOX-PCR, sequencing of 16S rDNA, nodC, nifH, atpD and glnII, and nodulation tests. The results demonstrated that most of the R. leguminosarum strains were effective microsymbionts of the wild Vicia species, while genomic species related to Rhizobium gallicum, Mesorhizobium huakuii, Ensifer meliloti and Bradyrhizobium spp. were symbiotic bacteria occasionally nodulating with Vicia species. In addition, fourteen strains related to Agrobacterium, Phyllobacterium, Ensifer, Shinella and R. tropici, as well as 22 strains of R. leguminosarum might be nodule endophytes without symbiotic genes. Diverse symbiotic gene lineages were found among the test strains and a strong association was found among the symbiotic gene types and genomic species, indicating the absence of lateral gene transfer. These results greatly enlarged the rhizobial spectrum of Vicia species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In the framework of soil phytoremediation using local legume plants coupled with their native root-nodulating bacteria to increase forage yields and preserve contaminated soils in arid regions of Tunisia, we investigated the diversity of bacteria from root nodules of Lathyrus sativus, Lens culinaris, Medicago marina, M. truncatula, and M. minima and the symbiotic efficiency of these five legume symbiosis under Cadmium stress. Fifty bacterial strains were characterized using physiological and biochemical features such heavy metals resistant, and PCR-RFLP of 16S rDNA. Taxonomically, the isolates nodulating L. sativus, and L. culinaris are species within the genera Rhizobium and the ones associated to Medicago sp, within the genera Sinorhizobium. The results revealed also that the cadmium tolerance of the different legumes-rhizobia interaction was as follows: M. minima<M. truncatula<M. marina<L. sativus<L. culinaris indicating that the effect of Cadmium on root nodulation and biomass production is more deleterious on M. minima-S. meliloti and M. truncatula-S. meliloti than in other symbiosis. Knowledge on genetic and functional diversity of M. marina, L. sativus and L. culinaris microsymbiotes is very useful for inoculant strain selection and can be selected to develop inoculants for soil phytoremediation.  相似文献   

11.
The diversity of rhizobia that establish symbiosis with Lotus corniculatus has scarcely been studied. Several species of Mesorhizobium are endosymbionts of this legume, including Mesorhizobium loti, the type species of this genus. We analysed the genetic diversity of strains nodulating Lotus corniculatus in Northwest Spain and ten different RAPD patterns were identified among 22 isolates. The phylogenetic analysis of the 16S rRNA gene showed that the isolated strains belong to four divergent phylogenetic groups within the genus Mesorhizobium. These phylogenetic groups are widely distributed worldwide and the strains nodulate L. corniculatus in several countries of Europe, America and Asia. Three of the groups include the currently described Mesorhizobium species M. loti, M. erdmanii and M. jarvisii which are L. corniculatus endosymbionts. An analysis of the recA and atpD genes showed that our strains belong to several clusters, one of them very closely related to M. jarvisii and the remanining ones phylogenetically divergent from all currently described Mesorhizobium species. Some of these clusters include L. corniculatus nodulating strains isolated in Europe, America and Asia, although the recA and atpD genes have been sequenced in only a few L. corniculatus endosymbionts. The results of this study revealed great phylogenetic diversity of strains nodulating L. corniculatus, allowing us to predict that even more diversity will be discovered as further ecosystems are investigated.  相似文献   

12.
Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil–plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.  相似文献   

13.
We characterized 34 endophytic bacterial isolates associated to root nodules collected from spontaneous legumes in the arid zone of Tunisia by 16S rDNA polymerase chain reaction (PCR)–restriction fragment length polymorphism, whole cell protein sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), 16S rDNA and 16S–23S rDNA internal transcribed spacer sequencing. Phylogenetically, these isolates belong to the branches containing the genera Inquilinus, Bosea, Rhodopseudomonas, Paracraurococcus, Phyllobacterium, Ochrobactrum, Starkeya, Sphingomonas, Pseudomonas, Agromyces, Microbacterium, Ornithinicoccus, Bacillus, and Paenibacillus. These strains did not induce any nodule formation when inoculated on the wide host spectrum legume species M. atropurpureum (Siratro) and no nodA gene could be amplified by PCR. However, nifH sequences, most similar to those of Sinorhizobium meliloti, were detected within strains related to the genera Microbacterium, Agromyces, Starkeya and Phyllobacterium.  相似文献   

14.
Twenty seven rhizobial strains associated with Acacia saligna grown in northern and southern Algeria were characterized, including generation time, host-range, the 16S rRNA gene and 16S–23S rRNA intergenic spacer restriction patterns, 16S rRNA gene sequence analysis and tolerance to salinity and drought. Cross inoculation tests indicated that 11 slow-growing isolates from northern nurseries were able to nodulate introduced Australian acacias exclusively, whereas 16 fast-growing isolates, mainly from southern nurseries, were capable of also nodulating native acacias. Restriction patterns and sequence analysis of the 16S rRNA gene showed that strains of the first group belonged to Bradyrhizobium while strains of the second group were related to Sinorhizobium meliloti and Rhizobium gallicum. Interestingly, five strains of the first group formed a distinct cluster phylogenetically close to Bradyrhizobium betae, a non-nodulating species causing tumour-like deformations in sugar beet roots. Bradyrhizobium strains were in general more sensitive to NaCl and PEG than the S. meliloti and R. gallicum representatives. Among the latter, strains S. meliloti BEC1 and R. gallicum DJA2 were able to tolerate up to 1 M NaCl and 20% PEG. This, together with their wide host-range among Acacia species, make them good candidates for developing inoculants for A. saligna and other acacia trees growing in arid areas.  相似文献   

15.
Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.  相似文献   

16.
Nodulated Pisum sativum plants showed the presence of native rhizobia in 16 out of 23 soil samples collected especially in northern and central Tunisia. A total of 130 bacterial strains were selected and three different ribotypes were revealed after PCR-RFLP analysis. Sequence analyses of rrs and four housekeeping genes (recA, atpD, dnaK and glnII) assigned 35 isolates to Rhizobium laguerreae, R. ruizarguesonis, Agrobacterium radiobacter, Ensifer meliloti and two putative genospecies. R. laguerreae was the most dominant species nodulating P. sativum with 63%. The isolates 21PS7 and 21PS15 were assigned to R. ruizarguesonis, and this is the first report of this species in Tunisia. Two putative new lineages were identified, since strains 25PS6, 10PS4 and 12PS15 clustered distinctly from known rhizobia species but within the R. leguminosarum complex (Rlc) with the most closely related species being R. indicum with 96.4% sequence identity. Similarly, strains 16PS2, 3PS9 and 3PS18 showed 97.4% and 97.6% similarity with R. sophorae and R. laguerreae, respectively. Based on 16S-23S intergenic spacer (IGS) fingerprinting, there was no clear association between the strains and their geographic locations. According to nodC and nodA phylogenies, strains of Rlc species and, interestingly, strain 8PS18 identified as E. meliloti, harbored the symbiotic genes of symbiovar viciae and clustered in two different clades showing heterogeneity within the symbiovar. All these strains nodulated and fixed nitrogen with pea plants. However, the strains belonging to A. radiobacter and the two remaining strains of E. meliloti were unable to nodulate P. sativum, suggesting that they were non-symbiotic strains. The results of this study further suggest that the Tunisian Rhizobium community is more diverse than previously reported.  相似文献   

17.
Most Ensifer strains are comparatively acid sensitive, compromising their persistence in low pH soils. In the acid‐tolerant strain Ensifer medicae WSM419, the acid‐activated expression of lpiA is essential for enhancing survival in lethal acidic conditions. Here we characterise a multi‐step phosphorelay signal transduction pathway consisting of TcsA, TcrA, FsrR, RpoN and its cognate enhancer‐binding protein EbpA, which is required for the induction of lpiA and the downstream acvB gene. The fsrR, tcrA, tcsA and rpoN genes were constitutively expressed, whereas lpiA and acvB were strongly acid‐induced. RACE mapping revealed that lpiA/acvB were co‐transcribed as an operon from an RpoN promoter. In most Ensifer species, lpiA/acvB is located on the chromosome and the sequence upstream of lpiA lacks an RpoN‐binding site. Nearly all Ensifer meliloti strains completely lack ebpA, tcrA, tcsA and fsrR regulatory loci. In contrast, E. medicae strains have lpiA/acvB and ebpA/tcrA/tcsA/fsrR co‐located on the pSymA megaplasmid, with lpiA/acvB expression coupled to an RpoN promoter. Here we provide a model for the expression of lpiA/acvB in E. medicae. This unique acid‐activated regulatory system provides insights into an evolutionary process which may assist the adaptation of E. medicae to acidic environmental niches.  相似文献   

18.
AIMS: In order to understand the genetic diversity of Acacia tortilis ssp. raddiana-rhizobia in Tunisia, isolates from nine geographical locations were obtained and analysed. METHODS AND RESULTS: Characterization using restriction fragment length polymorphism analysis (RFLP) of PCR-amplified 16S rRNA gene and the intergenic spacer (IGS) between the 16S and 23S rRNA genes was undertaken. Symbiotic efficiency of the strains was also estimated. Analysis of the 16S rRNA by PCR-RFLP showed that the isolates were phylogenetically related to Ensifer ssp., Rhizobium tropicii-IIA, and Rhizobium tumefaciens species. Analysis of 16S-23S spacer by PCR-RFLP showed a high diversity of these rhizobia and revealed eleven additional groups, which indicates that these strains are genetically very diverse. Full 16S rRNA gene-sequencing showed that the majority of strains form a new subdivion inside the genera Ensifer, with Ensifer meliloti being its nearest neighbour. Nodulation test performed on the plant host demonstrated differences in the infectivity among the strains. CONCLUSION: Rhizobial populations that nodulate specifically and efficiently Acacia tortilis ssp. raddiana in representative soils of Tunisia is dominated by E. meliloti-like genomospecies. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provides the first clear characterization and symbiotic efficiency data of rhizobia strains nodulating A. tortilis in Tunisia.  相似文献   

19.

Background  

Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.). In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco.  相似文献   

20.
The structure of rhizobial communities nodulating native shrubby legumes in open eucalypt forest of southeastern Australia was investigated by a molecular approach. Twenty-one genomic species were characterized by small-subunit ribosomal DNA PCR-restriction fragment length polymorphism and phylogenetic analyses, among 745 rhizobial strains isolated from nodules sampled on 32 different legume host species at 12 sites. Among these rhizobial genomic species, 16 belonged to the Bradyrhizobium subgroup, 2 to the Rhizobium leguminosarum subgroup, and 3 to the Mesorhizobium subgroup. Only one genomic species corresponded to a known species (Rhizobium tropici). The distribution of the various genomic species was highly unbalanced among the 745 isolates, legume hosts, and sites. Bradyrhizobium species were by far the most abundant, and Rhizobium tropici dominated among the Rhizobium and Mesorhizobium isolates in the generally acid soils where nodules were collected. Although a statistically significant association occurred between the eight most common genomic species and the 32 hosts, there was sufficient overlap in distributions that no clear specificity between rhizobial genomic species and legume taxa was observed. However, for three legume species, some preference for particular genomic species was suggested. Similarly, no geographical partitioning was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号