首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.  相似文献   

2.
The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5' nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% +/- 0.3% versus 4.1% +/- 1.5%) and the OSF group (0.8% +/- 0.3% versus 4.4% +/- 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants.  相似文献   

3.
The developing intestinal microbiota of breast-fed infants is considered to play an important role in the priming of the infants' mucosal and systemic immunity. Generally, Bifidobacterium and Lactobacillus predominate the microbiota of breast-fed infants. In intervention trials it has been shown that lactobacilli can exert beneficial effects on, for example, diarrhea and atopy. However, the Lactobacillus species distribution in breast-fed or formula-fed infants has not yet been determined in great detail. For accurate enumeration of different lactobacilli, duplex 5′ nuclease assays, targeted on rRNA intergenic spacer regions, were developed for Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus. The designed and validated assays were used to determine the amounts of different Lactobacillus species in fecal samples of infants receiving a standard formula (SF) or a standard formula supplemented with galacto- and fructo-oligosaccharides in a 9:1 ratio (OSF). A breast-fed group (BF) was studied in parallel as a reference. During the 6-week intervention period a significant increase was shown in total percentage of fecal lactobacilli in the BF group (0.8% ± 0.3% versus 4.1% ± 1.5%) and the OSF group (0.8% ± 0.3% versus 4.4% ± 1.4%). The Lactobacillus species distribution in the OSF group was comparable to breast-fed infants, with relatively high levels of L. acidophilus, L. paracasei, and L. casei. The SF-fed infants, on the other hand, contained more L. delbrueckii and less L. paracasei compared to breast-fed infants and OSF-fed infants. An infant milk formula containing a specific mixture of prebiotics is able to induce a microbiota that closely resembles the microbiota of BF infants.  相似文献   

4.
Twenty-eight exclusively breast-fed healthy infants and 16 infants also exclusively breast-fed with allergic colitis (aged 85 +/- 60 and 98 +/- 58 d, respectively) were screened for differences in fecal flora. Bifidobacteria were detected in 23 healthy infants and only in 4 fecal samples of infants with allergic colitis. All bifidobacteria-free infants possessed Gram-positive regular rods as a major group of their fecal flora. These bacteria were identified as clostridia using genus-specific FISH probe. Infants with allergy colitis possessed significantly lower counts of bifidobacteria and total anaerobes and significantly higher counts of clostridia in their feces. In healthy infants, Bifidobacterium longum was the most frequently found species (54.5% of the samples), followed by B. adolescentis (20.0), B. breve (18.2), B. bifidum (16.4), B. dentium (10.9) and B. pseudocatenulatum (1.80). Bifidobacterial isolates from two babies with allergic colitis were identified as B. longum, one child from patients group contained species B. dentium and one baby B. adolescentis. Our results suggest that there are significantly lower counts of bifidobacteria in infants with allergic colitis than in healthy infants.  相似文献   

5.
The aim of the study was to assess the quantitative and qualitative differences of the gut microbiota in infants. We evaluated gut microbiota at the age of 6 months in 32 infants who were either exclusively breast-fed, formula-fed, nursed by a formula supplemented with prebiotics (a mixture of fructo- and galacto-oligosaccharides) or breast-fed by mothers who had been given probiotics. The Bifidobacterium, Bacteroides, Clostridium and Lactobacillus/Enterococcus microbiota were assessed by the fluorescence in situ hybridization, and Bifidobacterium species were further characterized by PCR. Total number of bifidobacteria was lower among the formula-fed group than in other groups (P=0.044). Total amounts of the other bacteria were comparable between the groups. The specific Bifidobacterium microbiota composition of the breast-fed infants was achieved in infants receiving prebiotic supplemented formula. This would suggest that early gut Bifidobacterium microbiota can be modified by special diets up to the age of 6 months.  相似文献   

6.
Fifty bifidobacteria strains were isolated from fecal samples of allergic and age matched healthy infants. Allergic infants were found to have an adult type Bifidobacterium flora with high levels of Bifidobacterium adolescentis. Healthy infants had a typical infant Bifidobacterium flora with high levels of Bifidobacterium bifidum. These isolates were tested for their adhesive properties to human intestinal mucus. The adhesion of the fecal bifidobacteria from healthy infants was significantly higher (P<0.0001) than for allergic infants. This suggests a correlation between allergic disease and the composition of the intestinal bifidobacteria flora which has reduced adhesive abilities to the intestinal mucus. Therefore, dietary supplementation of bifidobacteria typical for healthy infants, may be beneficial in the treatment of allergic disorders.  相似文献   

7.
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.  相似文献   

8.
Specific probiotic combinations during early feeding, via the mother or incorporated in early formula-feeding, mold the intestinal microbiota composition in infants. The objective was to analyze the impact of probiotic administration to mother or infant on gut microbiota composition in 6-month-old Finnish and German infants. In Finland probiotics were given to mothers (n = 79) for 2 months prior to and 2 months after delivery. In Germany probiotics were started in infants (n = 81) at weaning, at the latest at 1 month of age, and continued for 4 months. A breast-fed group of 6-month-old infants (22 from Finland, 8 from Germany) were compared. Gut microbiota were analyzed by FCM-FISH and qPCR methods. In breast-fed infants a trend toward higher counts of bifidobacteria was detected in Finland (p = 0.097) as against Germany, where a more diverse microbiota was reflected in higher Akkermansia (p = 0.003), Clostridium histolyticum (p = 0.035) and Bacteroides-Prevotella (p = 0.027) levels and a higher percentage of Akkermansia (p = 0.004). Finnish LPR + BL999 intervention group (Lactobacillus rhamnosus LPR and Bifidobacterium longum BL999) had higher percentages of fecal Lactobacillus-Enterococcus (9.0% vs. 6.1% placebo, p = 0.003) and lower bifidobacteria levels (10.03 log cells/g vs. 10.68 log cells/g placebo, p = 0.018). Probiotic treatment had different impacts on gut microbiota composition in Finnish and German infants due to differences in mode of feeding and the early commensal microbiota. Probiotic treatment had different impacts on gut microbiota composition in Finnish and German infants due to differences in mode of feeding and the basic commensal microbiota.  相似文献   

9.
This study aimed to explore, in our geographical region, the development of intestinal microflora and the colonization patterns of lactic acid bacteria and bifidobacteria during the first three months of life and to investigate the effect of the mode of delivery. Fecal specimens from 82 healthy, full-term infants were collected prospectively 4, 30 and 90 days after delivery and subcultured on nonselective and selective media. Identification of isolates was performed by microbiological and molecular methods. For the delivery effect, two groups of vaginally or caesarean-delivered exclusively breast-fed infants were studied. Despite the early high total counts of aerobes and anaerobes, colonization of lactobacilli and bifidobacteria was overall limited until 3 months of age. Furthermore, caesarean-delivered infants were less often colonized with lactobacilli at day 4 (4% vs. 59%, p = 0.000) and with bifidobacteria at day 4 (0% vs. 23%, p = 0.015) and 30 (0% vs. 35%, p = 0.042) compared to vaginally delivered ones. No bacterial populations differences were detected to compare colonized infants. Identification results indicated the predominance of Lactobacillus rhamnosus, Lactobacillus johnsonii and Lactobacillus paracasei species in neonatal gut microflora up to the first month of life and diversity of Lactobacillus species in vaginally delivered, colonized newborns, at fourth day. Furthermore, Bifidobacterium longum and Bifidobacterium breve were the most frequently detected Bifidobacterium species in vaginally delivered, breast-fed infants. In conclusion our study revealed a restricted colonization pattern of lactic acid bacteria in Greek infants and a delay in the development of Lactobacillus and Bifidobacterium spp. microbiota after caesarean section. Further analysis of potential consequences of these findings is required.  相似文献   

10.
Bifidobacteria from breast-fed infants, formula-fed infants, or premature babies fed by parenteral methods were isolated and identified. The persistence of these microorganisms in the gastrointestinal tract of mice, after oral administration, was studied to determine the optimal dose and frequency of translocation to the liver and spleen. The rate of isolation among infants varied between 19 and 82% depending on the origin of the samples, with the highest values seen in breast-fed babies. The predominant species found in all cases was Bifidobacterium adolescentis. The optimal dose for oral administration of bifidobacteria to mice was 10(7) cells per day per animal for up to 2, 5, or 7 days. These bacteria remained up to 5 days postfeeding, even if feeding was interrupted. The results of bacterial translocation assays showed differences for the different strains and doses tested.  相似文献   

11.
The colonic microbiota mediates many cellular and molecular events in the host that are important to health. These processes can be affected in the elderly, because in some individuals, the composition and metabolic activities of the microbiota change with age. Detailed characterizations of the major groups of fecal bacteria in healthy young adults, in healthy elderly people, and in hospitalized elderly patients receiving antibiotics were made in this study, together with measurements of their metabolic activities, by analysis of fecal organic acid and ammonia concentrations. The results showed that total anaerobe numbers remained relatively constant in old people; however, individual bacterial genera changed markedly with age. Reductions in numbers of bacteroides and bifidobacteria in both elderly groups were accompanied by reduced species diversity. Bifidobacterial populations in particular showed marked variations in the dominant species, with Bifidobacterium angulatum and Bifidobacterium adolescentis being frequently isolated from the elderly and Bifidobacterium longum, Bifidobacterium catenulatum, Bifidobacterium boum, and Bifidobacterium infantis being detected only from the healthy young volunteers. Reductions in amylolytic activities of bacterial isolates in healthy elderly subjects and reduced short-chain fatty acid concentrations supported these findings, since bifidobacteria and bacteroides are important saccharolytic groups in the colon. Conversely, higher numbers of proteolytic bacteria were observed with feces samples from the antibiotic-treated elderly group, which were also associated with increased proteolytic species diversity (fusobacteria, clostridia, and propionibacteria). Other differences in the intestinal ecosystem in elderly subjects were observed, with alterations in the dominant clostridial species in combination with greater numbers of facultative anaerobes.  相似文献   

12.
Thirty-three fully breast-fed infants aged between 1 and 12 weeks were screened for bifidobacteria in feces. Bifidobacteria counts in most fecal samples determined both by TPY agar and FISH procedure ranged from 10(8) to 10(11) CFU/g. Three infants did not contain any bifidobacteria in their fecal samples. One child was delivered by caesarean section and the other two by normal vaginal delivery. All bifidobacteria-free infants possessed Gram-positive regular rods as a major group of their fecal flora. These bacteria were identified as clostridia using genus-specific FISH probe. In bifidobacteria-positive samples, B. longum (57.9% of the samples) was the most frequently found species, followed by B. adolescentis (31.6%), B. bifidum (21.0%), B. breve (10.5%), B. pseudocatenulatum (5.3%), and B. dentium (5.3%).  相似文献   

13.
To determine the influence of either exclusive breast-feeding or formula feeding on both composition and quantity of the gut microbiota in infants, we have developed real-time, quantitative PCR assays for the detection of Bifidobacterium spp. and Clostridium difficile. Furthermore, we have monitored the prevalence and counts of Escherichia coli by applying a previously described real-time PCR assay. We found all 100 infants tested to be colonized by Bifidobacterium spp. The bifidobacterial counts were comparable between the 50 breast-fed and 50 formula-fed infants with median values of 10.56 log10 and 10.24 log10 CFU g(-1) wet weight faeces, respectively. C. difficile was detected in 14% of the breast-fed and 30% of the formula-fed infants. In addition, the C. difficile counts were significantly lower in breast-fed infants than in the formula-fed group (median values of 3.28 log10 and 7.43 log10 CFU g(-1), respectively; p=0.03). The prevalence of E. coli in the breast-fed and formula-fed group was 80% and 94%, respectively. Also, the E. coli counts in colonized infants was significantly lower in the breast-fed infants than in the formula-fed group (median values of 9.11 log10 and 9.57 log10 CFU g(-1), respectively; p=0.004). We conclude that the prevalence and counts of C. difficile as well as E. coli are significantly lower in the gut microbiota of breast-fed infants than in that of formula-fed infants, whereas the prevalence and counts of Bifidobacterium spp. is similar among both groups.  相似文献   

14.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113-121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

15.
16SrDNA-targeted genus- and species-specific PCR primers have been developed and used for the identification and detection of bifidobacteria. These primers cover all of the described species that inhabit the human gut, or occur in dairy products. Identification of cultured bifidobacteria using PCR primer pairs is rapid and accurate, being based on nucleic acid sequences. Detection of bifidobacteria can be achieved using DNA extracted from human faeces as template in PCR reactions. We have found that, in adult faeces, the Bifidobacterium catenulatum group was the most commonly detected species, followed by Bifidobacterium longum, Bifidobacterium adolescentis, and Bifidobacterium bifidum. In breastfed infants, Bifidobacterium breve was the most frequently detected species, followed by Bifidobacterium infantis, B. longum and B. bifidum. It was notable that the B. catenulatum group was detected with the highest frequency in adults, although it has often been reported that B. adolescentis is the most common species. Real-time, quantitative PCR using primers targeting 16S rDNA shows promise in the enumeration of bifidobacteria in faecal samples. The approach to detect the target bacteria with quantitative PCR described in this review will contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

16.
Fecal microbiota of 31 breast-fed, 26 mix-fed, and 11 bottle-fed infants were analyzed by using terminal restriction fragment length polymorphism (T-RFLP), and culture method. We first determined the total and cultivated bacterial counts in infant fecal microbiota. Only approximately 30% of bacteria present in fecal microbiota were cultivable while the remainder was yet-to-be cultured bacteria. Sixty-eight fecal samples were divided into two clusters (I and II) by T-RFLP analysis, and then subdivided into five subclusters (Ia, Ib, IIa, IIb and IIc). There was no clear relationship between clusters and feeding method. A proportion of bifidobacteria was detected in the fecal material by PCR method using species-specific primers. The predominant Bifidobacterium spp. was Bifidobacterium longum longum type (43 samples (63.2%)), followed by B. longum infantis type (23 samples (33.8%)) and B. breve (16 samples (23.5%)). The distribution of Bifidobacterium spp. was similar in the three feeding groups. In contrast, the high incidence of B. breve in cluster I, especially subcluster Ia and B. longum longum type in cluster II, especially subcluster IIa and IIc were characterized by T-RFLP method. Our results showed that the colonization of Bifidobacterium spp. in infant feces correlated with the T-RFLP clusters.  相似文献   

17.
Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V(3) primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S. boulardii did not display any detectable universal changes in the DGGE profiles, nor did it influence the bifidobacterial levels. This study highlighted the capacity of an integrated approach consisting of DGGE analysis and RT-PCR to monitor and quantify pronounced changes in the fecal microbiota of healthy subjects upon functional food administration.  相似文献   

18.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

19.

Objectives

Bifidobacterium species are one of the major components of the infant''s intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant''s intestine.

Materials and Methods

Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5). Mother''s feces were collected twice before delivery. Infant''s feces were collected at 0 (meconium), 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant''s feces were analyzed by quantitative real-time PCR.

Results

Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother''s and infant''s intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant''s intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age.

Conclusions

Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant''s intestine shortly after birth. Our data suggest that the mother''s intestine is an important source for the vaginal delivered infant''s intestinal microbiota.  相似文献   

20.
Twenty-four Bifidobacterium strains were examined for their ability to bind to immobilized human and bovine intestinal mucus glycoproteins. Each of the tested bacteria exhibited its characteristic adhesion to human and bovine fecal mucus. No significant differences were found among the taxonomic species. Among the tested bacteria, B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. infantis, B. longum and B. pseudocatenulatum adhered to human fecal mucus better than bovine fecal mucus, while the binding of B. animalis and B. lactis was not preferential. These results suggest that the mucosal adhesive properties of bifidobacteria may be a strain dependent feature, and the mucosal binding of the human bifidobacteria may be more host specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号