首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
2.
Integrons are DNA elements which generally include one or more discrete gene cassettes inserted at a specific site. We have recently proposed a model for the acquisition and dissemination of genes found in the insert region of integrons, which requires the existence of circularized gene cassettes. Evidence for the existence of covalently closed circular molecules consisting of one or more gene cassettes has now been obtained. Low levels of small molecules which hybridize to probes specific for individual gene cassettes were detected in plasmid DNA isolated from cells containing a plasmid which includes an integron fragment with three gene cassettes aacC1, orfE and aadA2. These molecules were only detected when the gene encoding the integron DNA integrase was also present and are thus products of site-specific cassette excision. The excised cassettes have been shown to be in the form of covalently closed supercoiled circles, by digestion with restriction enzymes exonuclease III and DNase I. The circular excision products detected included either one cassette, aadA2 or orfE, two cassettes, aacC1 and orfE or all three cassettes. The predicted sequence of the recombinant junction in the excised aadA2 cassette confirmed that excision was precise. The predicted unique sequences of the 59-base elements associated with individual genes in the circular cassette form were compiled, and the sequences of the seven-base core sites which flank 59-base elements are now, with few exceptions, exact inverted repeats.  相似文献   

3.
4.
Class 1 integrons have strongly influenced the evolution of multiple antibiotic resistance. Diverse integrons have recently been detected directly in a range of natural environments. In order to characterize the properties of these environmental integrons, we sought to isolate organisms containing integrons from soils, which resulted in the isolation of Pseudomonas stutzeri strain Q. Further isolation efforts targeted at this species resulted in recovery of two other strains (P and BAM). 16S rRNA sequences and chromosome mapping showed that these three strains are very closely related clonal variants in a single genomovar of P. stutzeri. Only strains Q and BAM were found to contain an integron and an associated gene cassette array. The intI and attI components of these strains showed 99 and 90% identity, respectively. The structure of these integrons and their associated gene cassettes was similar to that reported previously for other integron classes. The two integrons contained nonoverlapping sets of cassette-associated genes. In contrast, many of the cassette-associated recombination sites in the two integrons were similar and were considered to constitute a distinct subfamily consisting of 59-base element (59-be) recombination sites (the Pseudomonas subfamily). The recombination activity of P. stutzeri integron components was tested in cointegrate assays. IntIPstQ was shown to catalyze site-specific recombination between its cognate attI site and 59-be sites from antibiotic resistance gene cassettes. While IntIPstQ did not efficiently mediate recombination between members of the Pseudomonas 59-be subfamily and other 59-be types, the former sites were functional when they were tested with IntI1. We concluded that integrons present in P. stutzeri possess recombination activity and represent a hot spot for genomic diversity in this species.  相似文献   

5.
From examination of published DNA sequences of genes found inserted at a specific site in integrons, all genes are shown to be associated, at their 3' ends, with a short imperfect inverted repeat sequence, a 59-base element or relative of this element. The similarity of the arrangement of gene inserts in the integron and in the Tn7 transposon family is described. A refined consensus for the 59-base element is reported. Members of this family are highly diverged and the relationship of a group of longer elements to the 59-base elements is demonstrated. The ability of 59-base elements of different length and sequence to act as sites for recombination catalysed by the integron-encoded DNA integrase is demonstrated, confirming that elements of this family have a common function. The ability of elements located between gene pairs to act as recombination sites has also been demonstrated. The recombination cross-over point has been localized to the GTT triplet which is conserved in the core sites, GTTRRRY, found at the 3' end of 59-base elements. Recombination at the core site found in inverse orientation at the 5' end of the 59-base elements was not detected, and the sequences responsible for orientation of the recombination event appear to reside within the 59-base element. A model for site-specific insertion of genes into integrons and Tn7-like transposons is proposed. Circular units consisting of a gene associated with a 59-base element are inserted into an ancestral element which contains neither a gene nor a 59-base element.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
IntI2 integron integrase in Tn7   总被引:15,自引:0,他引:15       下载免费PDF全文
Integrons can insert and excise antibiotic resistance genes on plasmids in bacteria by site-specific recombination. Class 1 integrons code for an integrase, IntI1 (337 amino acids in length), and are generally borne on elements derived from Tn5090, such as that found in the central part of Tn21. A second class of integron is found on transposon Tn7 and its relatives. We have completed the sequence of the Tn7 integrase gene, intI2, which contains an internal stop codon. This codon was found to be conserved among intI2 genes on three other Tn7-like transposons harboring different cassettes. The predicted peptide sequence (IntI2*) is 325 amino acids long and is 46% identical to IntI1. In order to detect recombination activity, the internal stop codon at position 179 in the parental allele was changed to a triplet coding for glutamic acid. The sequences flanking the cassette arrays in the class 1 and 2 integrons are not closely related, but a common pool of mobile cassettes is used by the different integron classes; two of the three antibiotic resistance cassettes on Tn7 and its close relatives are also found in various class 1 integrons. We also observed a fourth excisable cassette downstream of those described previously in Tn7. The fourth cassette encodes a 165-amino-acid protein of unknown function with 6.5 contiguous repeats of a sequence coding for 7 amino acids. IntI2*179E promoted site-specific excision of each of the cassettes in Tn7 at different frequencies. The integrases from Tn21 and Tn7 showed limited cross-specificity in that IntI1 could excise all cassettes from both Tn21 and Tn7. However, we did not observe a corresponding excision of the aadA1 cassette from Tn21 by IntI2*179E.  相似文献   

7.
The integration of gene cassettes into integrons is effected by site-specific recombination catalysed by an integrase, IntI, encoded by the integron. The cassette-associated recombination sites, 59-base elements, are not highly conserved and vary in length from 57 to 141 bp. They can be identified by their location and the relationship of over 20 bp at their outer ends to consensus sequences that are imperfect inverted repeats of one another. The recombination cross-over occurs close to one end of the 59-base element, within a conserved core site with the consensus sequence GTTAGGC or GTTRRRY. By introducing single-base changes at each of these positions in the aadB 59-base element, bases that are critical for site activity were identified. The recombination cross-over was also localized to a unique position between the adjacent G and T residues. Changes introduced in the conserved AAC of the inverse core site (GCCTAAC or RYYYAAC) located at the opposite end of the 59-base element also reduced site activity but to a lesser extent. Sequences of rare recombinants revealed an alternative position for strand exchange and led to the conclusion that 59-base elements comprise two simple sites, analogous to those recognized by other integrases, with each simple site made up of a pair of inversely oriented IntI binding domains separated by a spacer of 7 or 8 bp. Re-examination of the sequences of all known 59-base elements revealed that this simple site configuration was present at both the left and right ends in all 59-base elements. The identity of bases in the spacer is not required for efficient recombination and the cross-over is located at one end of the spacer, suggesting that during IntI1-mediated recombination only one strand exchange occurs.  相似文献   

8.
Integrons are genetic elements known for their role in the acquisition and expression of genes conferring antibiotic resistance. Such acquisition is mediated by an integron-encoded integrase, which captures genes that are part of gene cassettes. To test whether integrons occur in environments with no known history of antibiotic exposure, PCR primers were designed to conserved regions of the integrase gene and the gene cassette recombination site. Amplicons generated from four environmental DNA samples contained features typical of the integrons found in antibiotic-resistant and pathogenic bacteria. The sequence diversity of the integrase genes in these clones was sufficient to classify them within three new classes of integron. Since they are derived from environments not associated with antibiotic use, integrons appear to be more prevalent in bacteria than previously observed.  相似文献   

9.
Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.  相似文献   

10.
Integrons and gene cassettes: hotspots of diversity in bacterial genomes   总被引:1,自引:0,他引:1  
Integrons are genetic units found in many bacterial species that are defined by their ability to capture small mobile elements called gene cassettes. Cassettes usually contain only one gene, potentially any gene, and an attC recombination site, and thousands of cassettes have been sequenced. A specialized IntI site-specific recombinase encoded by the integron recognizes attC and incorporates cassettes into an attI site located adjacent to the intI gene. Over 100 types of integrons have been found, most in bacterial chromosomes. They can all potentially share the same cassettes and, as recombination between attC in a cassette and an attI can occur repeatedly, an integron can contain from zero to hundreds of cassettes. Cassette arrays that are not located next to an intI gene, or solo cassettes at apparently random sites, are also seen. Hence, integrons contribute to generation of diversity in bacterial, plasmid, and transposon genomes and facilitate extensive sharing of information among bacteria.  相似文献   

11.
Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.  相似文献   

12.
Ruth M. Hall  H. W. Stokes 《Genetica》1993,90(2-3):115-132
Integrons are unusual DNA elements which include a gene encoding a site-specific DNA recombinase, a DNA integrase, and an adjacent site at which a wide variety of antibiotic resistance and other genes are found as inserts. One or more genes can be found in the insert region, but each gene is part of an independent gene cassette. The inserted genes are expressed from a promoter in the conserved sequences located 5 to the genes, and integrons are thus natural expression vectors. A model for gene insertion in which circular gene cassettes are inserted individually via a single site-specific recombination event has been proposed and verified experimentally. The gene cassettes include a gene coding region and, at the 3 end of the gene an imperfect inverted repeat, a 59-base element. The 59-base elements are a diverse family of elements which function as sites recognized by the DNA integrase. Site-specific insertion of individual genes thus represents a further mechanism which contributes to the evolution of the genomes of Gram-negative bacteria and their plasmids and transposons.Members of the most studied class of integrons, which include thesulI gene in the conserved sequences, are believed to be mobile DNA elements on the basis that they are found in many independent locations, and a discrete boundary is found at the outer end of the 5-conserved segment. However, the length of the 3-conserved segment is variable in the integrons examined to date, and it is likely that this variability has arisen as the result of insertion and deletion events. Though the true extent of the 3-conserved segment remains to be determined, it seems likely that these integrons are mobile DNA elements. The second known class of integrons comprises members of the Tn7 transposon family.  相似文献   

13.

Background  

Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be). Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains.  相似文献   

14.
15.
Genes borne on cassettes are mobile owing to site-specific recombination systems called integrons, which have created various combinations of antibiotic resistance genes in R-plasmids. In these processes, the palindromic site, attC (59-base element), at cassette junctions has been proposed as being essential. Excised and circularized cassettes have been found to integrate with preference for an attI site at one end of the conserved sequence in integrons. In this work, we give evidence that recombination is possible in the absence of the highly organized attC sites between the more simply organized attI sites. Furthermore, at a very low frequency representing the background in our recombination assay, we observed cross-overs between attI and secondary sites. To characterize recombination excluding the attC sites, we have used naturally occurring attI variants and constructed mutants. The cross-over point was identified between a guanine and a thymine in attI using point mutations. Progressive deletions showed the extent of attI and identified two important regions in the conserved sequence 5' of the cross-over point. A region 27–36 bp 5' of attI influenced recombination with attC sites only, whereas a sequence 9–14 bp 5' of the cross-over point in attI was important for recombination with both attI and attC . Recombination between attI and secondary sites could allow fusion of the conserved sequence encoding the integron site-specific recombinase to new sequences.  相似文献   

16.
Site-specific insertion of gene cassettes into integrons   总被引:17,自引:3,他引:14  
Site-specific insertion of gene cassettes into the insert region of integrons has been demonstrated. Insertion was only observed if the integron DNA integrase was expressed in the recipient cell and if the cassette DNA was ligated prior to transformation. The essential ligation products were resistant to treatment with exonuclease III, indicating that they were closed circular molecules. Insertion of cassettes into integron fragments containing either no insert (one recombination site), or one gene cassette (two recombination sites), was demonstrated. In the latter case, insertion occurred predominantly at the core site located 5′ to the resident cassette, which corresponds to the only site available when no insert is present in the recipient. When DNA molecules including two gene cassettes were used, insertion of only one of the gene cassettes was generally observed, suggesting that resolution of the circular molecule to generate two independent circular cassettes occurred more rapidly than insertion into the recipient integron.  相似文献   

17.
Gene cassettes and cassette arrays in mobile resistance integrons   总被引:7,自引:0,他引:7  
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.  相似文献   

18.
Aims: To characterize the molecular diversity of class 1 integrons and antibiotic resistance (AR) genes of Enterobacteriaceae strains recovered from aquatic habitats in Jinan, Shandong Province, China. Methods and Results: Six hundred and thirty‐eight antimicrobial‐resistant Enterobacteriaceae isolated from wastewater were examined for class 1 integron. Of these, 293 were positive for the class 1 integrase gene intI1; among these, 34 gene cassettes and 29 AR genes were detected. Twenty‐nine distinct gene cassette arrays were identified by restriction fragment length polymorphism (RFLP). Seven strains harboring novel gene cassette arrays were subjected to further study, in which antimicrobial susceptibility profiles were determined, and the presence of other AR genes outside of the integrons was assayed. Several of the resistance determinants were found to be transferable by conjugation or transformation. Conclusions: This study established the assessment of class 1 integron and antimicrobial resistance gene patterns among environmental Enterobacteriaceae. Also, a restriction enzyme EcoRII was employed to develop a rapid and simple method for characterizing gene cassette arrays by RFLP analysis, which facilitated further study of novel gene cassette arrays. Significance and Impact of Study: These data not only illustrated the diversity of class 1 integron gene cassettes but also provided direct evidence that integrons mobilized gene cassettes, generating new linkages of resistance genes, and they could be integrated in gene transfer units such as conjugative plasmids to contribute to the dissemination of AR genes by horizontal gene transfer (HGT) in aquatic environments.  相似文献   

19.
Ke X  Gu B  Pan S  Tong M 《Archives of microbiology》2011,193(11):767-774
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.  相似文献   

20.
Lateral gene transfer has been proposed as a fundamental process underlying bacterial diversity. Transposons, plasmids and phage are widespread and have been shown to significantly contribute to lateral gene transfer. However, the processes by which disparate genes are assembled and integrated into the host regulatory network to yield new phenotypes are poorly known. Recent discoveries about the integron/gene cassette system indicate it has the potential to play a role in this process. Gene cassettes are small mobile elements typically consisting of a promoterless orf and a recombination site. Integrons are capable of acquisition and re-arrangement of gene cassettes and of the expression of their associated genes. The potential of the integron/gene cassette system is thus largely determined by the diversity contained within the cassette pool and the rate at which integrons sample this pool. We show here using a polymerase chain reaction (PCR) approach by which the environmental gene cassette (EGC) metagenome can be directly sampled that this metagenome contains both protein-coding and non-protein coding genes. Environmental gene cassette-associated recombination sites showed greater diversity than previously seen in integron arrays. Class 1 integrons were shown to be capable of accessing this gene pool through tests of recombinational activity with a representative range of EGCs. We propose that gene cassettes represent a vast, prepackaged genetic resource that could be thought of as a metagenomic template for bacterial evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号