首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO2 compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO2 had been removed. P700 was more oxidized at any measured irradiance in CO2-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO2-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO2-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO2-free air, with an activation state 50% of maximum. We conclude that, at the CO2 compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane.  相似文献   

2.
The responses of minimal and maximal fluorescence yields of chlorophyll a to irradiance of actinic white light were determined by pulse modulated fluorimetry in leaf discs from tobacco, Nicotiana tabacum, at 1.6, 20.5, and 42.0% (v/v) O2. Steady-state maximal fluorescence yield (Fm′, measured during a saturating light pulse) declined with increasing irradiance at all O2 levels. In contrast, the steady-state minimal fluorescence yield (Fo′, measured during a brief dark interval) increased with irradiance relative to that recorded for the fully dark-adapted leaf (Fo) or that observed after 5 minutes of darkness (Fo*). The relative magnitude of this increase was somewhat greater and extended to higher irradiances at the elevated O2 levels compared with 1.6% O2. Suppression of Fo′ was only observed consistently at saturating irradiance. The results are interpreted in terms of the occurrence of photosystem II units possessing exceedingly slow turnover times (i.e. “inactive” units). Inactive units play an important role, along with thermal deactivation of excited chlorophyll, in determining the response of in vivo fluorescence yield to changes in irradiance. Also, a significant interactive effect of O2 concentration and the presence or absence of far red light on oxidation of photosystem II acceptors in the dark was noted.  相似文献   

3.
The relationship between photochemical quantum yield (s) and fluorescence yield have been investigated in leaf tissue from Nicotiana tabacum using CO2 exchange and a modulated fluorescence measuring system. The quantum yield of CO2 fixation at 1.6% (v/v) O2 and limiting irradiance was reduced 20% by increasing the mean H2O vapor pressure deficit (VPD) from 9.2 to 18.6 mbars. As [CO2] and irradiance were varied, the intrinsic quantum yield of open photosystem II units (s/qQ where qQ is the photochemical fluorescence quenching coefficient) declined linearly with the degree of nonphotochemical fluorescence quenching. The slope and y-intercept values for this function were significantly reduced when the mean VPD was 18.4 millibars relative to 8.9 millibars. Susceptibility of the leaf tissue to photoinhibition was unaffected by VPD. Elevated O2 concentrations (20.5% v/v) reduced the intrinsic quantum yield of net CO2 uptake due to the occurrence of O2-reducing processes. However, the relative effect of high VPD compared to low VPD on intrinsic quantum yield was not dependent on the O2 level. This suggests that the Mehler reaction does not mediate the response of quantum yield to elevated VPD. The results are discussed with regard to the possible role of transpiration stress in regulating dissipation of excitation by electron transport pathways other than noncyclic electron flow supporting reduction of CO2 and/or O2.  相似文献   

4.
The effects of gas phase O2 concentration (1%, 20.5%, and 42.0%, v/v) on the quantum yield of net CO2 fixation and fluorescence yield of chlorophyll a are examined in leaf tissue from Nicotiana tabacum at normal levels of CO2 and 25 to 30°C. Detectable decreases in nonphotochemical quenching of absorbed excitation occurred at the higher O2 levels relative to 1% O2 when irradiance was nearly or fully saturating for photosynthesis. Photochemical quenching was increased by high O2 levels only at saturating irradiance. Simultaneous measurements of CO2 and H2O exchange and fluorescence yield permit estimation of partitioning of linear photosynthetic electron transport between net CO2 fixation and O2-dependent, dissipative processes such as photorespiration as a function of leaf internal CO2 concentration. Changes in the in vivo CO2:O2 `specificity factor' (Ksp) with increasing irradiance are examined. The magnitude Ksp was found to decline from a value of 85 at moderate irradiance to 68 at very low light, and to 72 at saturating photon flux rates. The results are discussed in terms of the applicability of the ribulose bisphosphate carboxylase/oxygenase enzyme model to photosynthesis in vivo.  相似文献   

5.
The irradiance dependence of the efficiencies of photosystems I and II were measured for two pea (Pisum sativum [L.]) varieties grown under cold conditions and one pea variety grown under warm conditions. The efficiencies of both photosystems declined with increasing irradiance for all plants, and the quantum efficiency of photosystem I electron transport was closely correlated with the quantum efficiency of photosystem II electron transport. In contrast to the consistent pattern shown by efficiency of the photosystems, the redox state of photosystem II (as estimated from the photochemical quenching coefficient of chlorophyll fluorescence) exhibited relationships with both irradiance and the reduction of P-700 that varied with growth environment and genotype. This variability is considered in the context of the modulation of photosystem II quantum efficiency by both photochemical and nonphotochemical quenching of excitation energy.  相似文献   

6.
The quantum yields of C3 and C4 plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O2 and in 2% O2. At 30 C, the quantum yields of C3 plants averaged 0.0524 ± 0.0014 mol CO2/absorbed einstein and 0.0733 ± 0.0008 mol CO2/absorbed einstein under 21 and 2% O2. At 30 C, the quantum yields of C4 plants averaged 0.0534 ± 0.0009 mol CO2/absorbed einstein and 0.0538 ± 0.0011 mol CO2/absorbed einstein under 21 and 2% O2. At 21% O2, the quantum yield of a C3 plant is shown to be strongly dependent on both the intercellular CO2 concentration and leaf temperature. The quantum yield of a C4 plant, which is independent of the intercellular CO2 concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C3 plants are due to changes in the O2 inhibition. The evolutionary significance of the CO2 dependence of the quantum yield in C3 plants and the ecological significance of the temperature effects on the quantum yields of C3 and C4 plants are discussed.  相似文献   

7.
Evolution of o(2) in brown algal chloroplasts   总被引:1,自引:1,他引:0       下载免费PDF全文
A method is described for the isolation of photosynthetically active chloroplasts from four species of brown algae: Fucus vesiculosis, Nereocystis luetkeana, Laminaria saccharina, and Macrocystis integrifolia. When compared to lettuce and spinach chloroplasts, the algal chloroplasts all showed lower activities for both photosystems II and I. Chloroplasts from all the plants produced H2O2, with photosystem I functioning as the O2 reductant in the light. In contrast to the green plants, however, brown algal chloroplasts strongly reduced O2 under conditions where both photosystems II and I remain active. Relative variable fluorescence values were lower both in intact plants and chloroplasts of the brown algae than for either spinach or lettuce. It is suggested that although light harvesting activities appear similar in all the plants, details of electron transport in brown algae may differ from those of green plants.  相似文献   

8.
Intact Lemna gibba plants were photoinhibited under anaerobic conditions on illumination with monochromatic light which selectively excited the photosystems. Photoinhibition was less when PS 1 was excited and greatest when mainly PS 2 was excited, which suggests that PS 2 was most damaged by photoinhibition induced in complete absence of O2 and CO2.The illumination of plants with monochromatic light exciting PS 1, at different O2 concentrations (in CO2 deficient conditions), showed that PS 1 photoinhibition was increased at the low O2 concentrations. The damage to PS 1 was more evident at 2% O2 than at the higher O2 concentrations.CO2 as well as O2 at atmospheric concentration, (air), was necessary for complete protection of the plant from photoinhibition when both photosystems were excited either separately or together.Abbreviations I irradiance, photon fluence rate - PCO photosynthetic carbon oxidation cycle - PCR photosynthetic carbon reduction cycle - PS 1 photosystem 1 - PS 2 photosystem 2  相似文献   

9.
The responses of the quantum efficiencies of photosystem (PS) II and PSI measured in vivo simultaneously with estimations of the activities and activation states of NADP-malate dehydrogenase, chloroplast fructose-1,6-bisphosphatase, and ribulose-1,5-bisphosphate carboxylase were used to study the relationship between electron transport and carbon metabolism. The effects of varying irradiance and CO2 partial pressure on the relationship between the quantum efficiencies of PSI and II, and the activity of these enzymes shows that the interrelationships vary according to the limitations placed on the system. The relationship between the quantum efficiencies of PSII and PSI was linear in most situations. In response to increasing irradiance, the activity of all three enzymes increased. In the case of NADP-malate dehydrogenase this increase was well correlated with the estimated flux of electrons through PSI and PSII. The other two enzymes showed a more complex relationship with the estimated flux of electrons through both photosystems. These relationships are consistent with the known interactions between these stromal enzymes and the thylakoids. The response to varying CO2 partial pressure is more complex. The efficiencies of PSI and II declined with decreasing CO2 partial pressure and the activity of each enzyme varied uniquely. However, there are clear correlations between the activities of the enzymes and the flux of electrons through the photosystems. In contrast to the data obtained under conditions of varying irradiance, there is clear evidence of photosynthetic control of electron transport when the CO2 concentration is varied.  相似文献   

10.
Leaves of Kalanchoë pinnata were exposed in the dark to air (allowing the fixation of CO2 into malic acid) or 2% O2, 0% CO2 (preventing malic acid accumulation). They were then exposed to bright light in the presence or absence of external CO2 and light dependent inhibition of photosynthetic properties assessed by changes in 77 K fluorescence from photosystem II (PSII), light response curves and quantum yields of O2 exchange, rates of electron transport from H2O through QB (secondary electron acceptor from the PSII reaction center) in isolated thylakoids, and numbers of functional PSII centers in intact leaf discs. Sun leaves of K. pinnata experienced greater photoinhibition when exposed to high light in the absence of CO2 if malic acid accumulation had been prevented during the previous dark period. Shade leaves experienced a high degree of photoinhibition when exposed to high light regardless of whether malic acid had been allowed to accumulate in the previous dark period or not. Quantum yields were depressed to a greater degree than was 77 K fluorescence from PSII following photoinhibition.  相似文献   

11.
Peterson RB 《Plant physiology》1989,90(4):1322-1328
The partitioning of noncyclic photosynthetic electron transport between net fixation of CO2 and collective O2-dependent, dissipative processes such as photorespiration has been examined in intact leaf tissue from Nicotiana tabacum. The method involves simultaneous application of CO2 exchange and pulse modulated fluorescence measurements. As either irradiance or CO2 concentration is varied at 1% O2 (i.e. absence of significant O2-dependent electron flow), the quantum efficiency of PSII electron transport (se) with CO2 as the terminal acceptor is a linear function of the ratio of photochemical:nonphotochemical fluorescence quenching coefficients (i.e. qQ:qNP). When the ambient O2 concentration is raised to 20.5% or 42% the qQ:qNP is assumed to predict the quantum efficiency of total noncyclic electron transport (′se). A factor which represents the proportion of electron flow diverted to the aforementioned dissipative processes is calculated as (′sese)/′se where se is now the observed quantum efficiency of electron transport in support of net fixation of CO2. Examination of changes in electron allocation with CO2 and O2 concentration and irradiance at 25°C provides a test of the applicability of the Rubisco model to photosynthesis in vivo.  相似文献   

12.
The brown alga Macrocystis pyrifera (giant kelp) was studied by a combination of fluorescence spectroscopy at 77 kelvin, room temperature modulated fluorimetry, and photoacoustic techniques to determine how light energy is partitioned between photosystems I and II in states 1 and 2. Preillumination with farred light induced the high fluorescence state (state 1) as determined by fluorescence emission spectra measured at 77K and preillumination with green light produced a low fluorescence state (state 2). Upon transition from state 1 to state 2, there was an almost parallel decrease of all of the fluorescence bands at 693, 705, and 750 nanometers and not the expected decrease of fluorescence of photosystem II and increase of fluorescence in photosystem I. The momentary level of room temperature fluorescence (fluorescence in the steady state, Fs), as well as the fluorescence levels corresponding to all closed (Fm) or all open (Fo) reaction-center states were measured following the kinetics of the transition between states 1 and 2. Calculation of the distribution of light 2 (540 nanometers) between the two photosystems was done assuming both the `separate package' and `spill-over' models. Unlike green plants, red algae, and cyanobacteria, the changes here of the light distribution were rather small in Macrocystis so that there was approximately an even distribution of the photosystem II light at 540 nanometers to photosystem I and photosystem II in both states 1 and 2. Photoacoustic measurements confirmed the conclusions reached as a result of fluorescence measurements, i.e. an almost equal distribution of light-2 quanta to both photosystems in each state. This conclusion was reached by analyzing the enhancement phenomenon by light 2 of the energy storage measured in far red light. The effect of light 1 in decreasing the energy storage measured in light 2 is also consistent with this conclusion. The photoacoustic experiments showed that there was a significant energy storage in light 1 which could be explained by cyclic electron transport around photosystem I. From a quantitative analysis of the enhancement effect of background light 2 (maximum enhancement of 1.4-1.5) it was shown that around 70% of light 1 was distributed to this cyclic photosystem I transport.  相似文献   

13.
Hardt H  Kok B 《Plant physiology》1977,60(2):225-229
Treatment of spinach chloroplasts with glutaraldehyde causes an inhibition in the electron transport chain between the two photosystems. Measurements of O2 flash yields, pH exchange, and fluorescence induction show that the O2 evolving apparatus, photosystem II and its electron acceptor pool are not affected. The behavior of P700 indicates that its reduction but not its oxidation, is severely inhibited. Cytochrome f is still reducible by photosystem II but also slowly oxidizable by photosystem I. The sensitivity of isolated plastocyanin to glutaraldehyde further supports the conclusion that glutaraldehyde inhibits at the plastocyanin level and thereby induces a break between P700 and cytochrome f.  相似文献   

14.
Peterson RB 《Plant physiology》1994,105(1):349-356
Regulation of the quantum yields of linear electron transport and photosystem II photochemistry ([phi]II) with changing irradiance and gas-phase O2 concentration was studied in leaf tissue from Panicum bisulcatum (C3), Panicum milioides (C3-C4), and Panicum antidotale (C4) at 200 [mu]bars of CO2 and 25[deg]C using infrared gas analysis and chlorophyll fluorescence yield measurements. When the O2 level was increased from 14 to 213 mbars at high irradiance, [phi]II increased by as much as 115% in P. bisulcatum but by no more than 17% in P. antidotale. Under the same conditions [phi]II increased to an intermediate degree in P. milioides. Measurements of accumulation of the photooxidized form of the photosystem I reaction center (P700+) based on the light-dependent in vivo absorbance change at 830 nm indicate that the steady-state concentration of P700+ varied in an antiparallel manner with [phi]II when either the irradiance or O2 concentration was changed. Hence, O2-dependent changes in [phi]II were indicative of variations in linear photosynthetic electron transport. These experiments revealed, however, that a significant capacity was retained for in vivo regulation of the apparent quantum yield of photosystem I ([phi]I) independently of [phi]II+ Coordinate regulation of quantum yields of photosystems I and II (expressed as [phi]I:[phi]II in response to changing irradiance and O2 level differed markedly for the C3 and C4 species, and the response for the C3-C4 species most closely resembled that observed for the C4 species. The fraction of total linear electron transport supporting photorespiration at 213 mbars of O2 was negligible in the C4 species and was 13% lower in the C3-C4 species relative to the C3 species as calculated from fluorescence and gas-exchange determinations. At high photon-flux rates and high O2 concentration, the potential benefit to light use for net CO2 uptake arising from lower photorespiration in P. milioides was offset by a reduced capacity for total CO2- and O2-dependent noncyclic electron transport in this species compared with P. bisulcatum.  相似文献   

15.
Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO2 per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (FO) was increased and induced fluorescence ([FP-FI]/FO) was reduced. The effect was greatest in the undroughted plants grown at 660 μl CO2 L−1. By week 22 at 330 μl CO2 L−1 acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 μl CO2 L−1. The light saturated rate of photosynthesis of needles with adequate P was higher at 660 μl CO2 L−1 than at 330 μl CO2 L−1, whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO2 concentration. The average growth increase due to CO2 enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 μl CO2 L−1, there was a reduction in the maximal rate of quenching of fluorescence (RQ) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 μl CO2 L−1 this response was eliminated showing that CO2 enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO2 enrichment was 37% in drought stressed plants and 19% in unstressed plants.  相似文献   

16.
The rate of CO2 reduction in the S-triazine-resistant biotype of smooth pigweed (Amaranthus hybridus L.) was lower at all levels of irradiance than the rate of CO2 reduction in the susceptible biotype. The intent of this study was to determine whether or not the lower rates of CO2 reduction are a direct consequence of the same factors which confer triazine resistance. The quantum yield of CO2 reduction was 23 ± 2% lower in the resistant biotype of pigweed and the resistant biotype of pigweed had about 25% fewer active photosystem II centers on both a chlorophyll and leaf area basis. This quantum inefficiency of the resistant biotype can be accounted for by a decrease in the equilibrium constant between the primary and secondary quinone acceptors of the photosystem II reaction centers which in turn would lead to a higher average level of reduced primary quinone acceptor in the resistant biotype. Thus, the photosystem II quantum inefficiency of the resistant biotype appears to be a direct consequence of those factors responsible for triazine resistance but a caveat to this conclusion is discussed. The effects of the quantum inefficiency of photosystem II on CO2 reduction should be overcome at high light and therefore cannot account for the lower light-saturated rate of CO2 reduction in the resistant biotype. Chloroplast lamellar membranes isolated from both triazine-resistant and triazine-susceptible pigweed support equivalent rates of whole chain electron transfer and these rates are sufficient to account for the rate of light-saturated CO2 reduction. This observation shows that the slower transfer of electrons from the primary to the secondary quinone acceptor of photosystem II, a trait which is characteristic of the resistant biotype, is nevertheless still more rapid than subsequent reactions of photosynthetic CO2 reduction. Thus, it appears that the lower rate of light-saturated CO2 reduction of the resistant biotype is not limited by electron transfer capacity and therefore is not a direct consequence of those factors which confer triazine resistance.  相似文献   

17.
Elisha Tel-Or  Shmuel Malkin 《BBA》1977,459(2):157-174
The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured: Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63? and NADP as electron acceptors (Photosystem II and Photosystem II+Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern.On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90 % (10 %) of the chlorophyll a, 90 % (10 %) of the carotenoids and 15 % (85 %) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments: they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction.The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20–40 %) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion.The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition to chlorophyll a, by phycocyanine and an unidentified long wavelength component.The variable fluorescence does not change in the transition from whole cells to spheroplasts. However, the constant fluorescence increases considerably. This indicates the release of a small fraction of pigments from the photosynthetic photochemical apparatus which then become fluorescent.  相似文献   

18.
Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu2+ were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu2+. Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu2+. The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L?1 Cu2+ compared to control. On the contrary, photosystem I was stable under Cu2+ stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L?1 Cu2+ compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu2+ concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu2+, while photosystem I activity was enhanced under Cu2+ stress.  相似文献   

19.
Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with a construct encoding the mature form of tobacco (Nicotiana tabacum L.) carbonic anhydrase (CA) under the control of a strong constitutive promoter. Expression of the tobacco CA was detected in transformant whole-leaf and bundle-sheath cell (bsc) extracts by immunoblot analysis. Whole-leaf extracts from two CA-transformed lines demonstrated 10% to 50% more CA activity on a ribulose-1,5-bisphosphate carboxylase/oxygenase-site basis than the extracts from transformed, nonexpressing control plants, whereas 3 to 5 times more activity was measured in CA transformant bsc extracts. This increased CA activity resulted in plants with moderately reduced rates of CO2 assimilation (A) and an appreciable increase in C isotope discrimination compared with the controls. With increasing O2 concentrations up to 40% (v/v), a greater inhibition of A was found for transformants than for wild-type plants; however, the quantum yield of photosystem II did not differ appreciably between these two groups over the O2 levels tested. The quantum yield of photosystem II-to-A ratio suggested that at higher O2 concentrations, the transformants had increased rates of photorespiration. Thus, the expression of active tobacco CA in the cytosol of F. bidentis bsc and mesophyll cells perturbed the C4 CO2-concentrating mechanism by increasing the permeability of the bsc to inorganic C and, thereby, decreasing the availability of CO2 for photosynthetic assimilation by ribulose-1,5-bisphosphate carboxylase/oxygenase.  相似文献   

20.
Hodges M  Barber J 《Plant physiology》1983,72(4):1119-1122
A study has been made on the State 1-State 2 transitions exhibited by the unicellular green algae Chlorella pyrenoidosa. Chlorophyll fluorescence induction curves from algae adapted to State 1 or State 2 have been analyzed and a comparison made with similar curves produced by decreasing the intensity of light going to the photosystem II reaction centers. In both cases, quenching of the maximum fluorescence yield (Fm) and the initial fluorescence yield (Fo) were observed so that the Fv/Fm ratio and the area above the induction curve (Amax) remained constant. The State 1-State 2 transition also produced changes in the βmax component indicative of some alteration within photosystem II organization. The implications of these experiments on the in vivo mechanism for energy redistribution between the two photosystems are discussed in terms of changes in absorption cross-section rather than being due to spillover from photosystem II to photosystem I. These changes may reflect the phosphorylation of the light-harvesting chlorophyll a/b protein complex and its subsequent migration away from the photosystem II core leading to its closer association with photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号