首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The influence of liming on soil solution composition was compared in two laboratory amended soils and one field amended soil. In the laboratory study, soil solutions were sampled by miscible displacement at intervals of 1 and 10 weeks after liming. In addition to increases in pH and Ca, there were large reductions in the concentrations of Mg, K, Na, Si and Mn. Solution concentration of free Al decreased with liming; however, organically complexed Al increased, as did soluble organic matter. Liming also stimulated mineralization of N as indicated by increased solution NO3 levels. The field amended soils were obtained from a long-term cutting trial investigating the effects of lime on pasture. Despite the passage of a 16-year interval since application, the effects of lime on soil solution characteristics were still clearly evident and generally consistent with those observed in the laboratory study. Estimated leaching losses of Ca from limed soil were relatively low, amounting to 12%, 27% and 44% of the 4.2, 8.4 and 12.5 t lime ha−1 applied, respectively. The results suggest that, in Eastern Ireland, a lime treatment would maintain and elevated pH and would influence the avialability and mobility of plant nutrients for some decades following application.  相似文献   

2.

Aims

Wilderness and other natural areas are threatened by large-scale disturbances (e.g., wildfire), air pollution, climate change, exotic diseases or pests, and a combination of these stress factors (i.e., stress complexes). Linville Gorge Wilderness (LGW) is one example of a high elevation wilderness in the southern Appalachian region that has been subject to stress complexes including chronic acidic deposition and several wildfires, varying in intensity and extent. Soils in LGW are inherently acidic with low base cation concentrations and decades of acidic deposition have contributed to low pH, based saturation, and Ca:Al ratio. We hypothesized that wildfires that occurred in LGW followed by liming burned areas would accelerate the restoration of acidic, nutrient depleted soils. Because soils at LGW had extremely low concentrations of exchangeable Ca2+ and Mg2+ dolomitic lime was applied to further boost these cations. We evaluated the effectiveness of dolomitic lime application in restoring exchangeable Ca2+ and Mg2+ and subsequently increasing pH and Ca:Al ratio of soils and making Ca and Mg available to recovering vegetation.

Methods

Five treatment areas were established: severely burned twice (2000 & 2007) with dolomitic lime application (2xSBL); moderately burned twice with lime application (2xMBL); severely burned twice, unlimed (2xSB); moderately burned once (2000), unlimed (1xMB); and a reference area (REF; unburned, unlimed). In 2008 and 2009, we measured overstory, understory, and ground-layer vegetation; forest floor mass and nutrients; and soil and soil solution chemistry within each treatment area.

Results

All wildfire burned sites experienced substantial overstory mortality. However, understory biomass doubled between sample years on the most recently burned sites due to the rapid regrowth of ericaceous shrubs and prolific sprouting of deciduous trees. Burning followed by lime application (2xSBL and 2xMBL) significantly increased shallow soil solution NO3-N, but we found no soil solution NO3-N response to burning alone (2xSB and 1xMB). Surface soil base saturation and exchangeable Ca2+ were significantly affected by liming; Ca2+ concentrations were greater on 2xMBL and 2xSBL than 2xSB, 1xMB and REF. There was a smaller difference due to moderate burning along with greater soil Ca2+ on 1xMB compared to REF, but no difference between 2xSB and REF. Surface and subsurface soil exchangeable Al3+ were lower on 2xSBL than 2xSB, 2xMBL, 1xMB, and REF. Liming decreased soil acidity somewhat as surface soil pH was higher on the two burned sites with lime (pH?=?3.8) compared to 2xSB without lime (pH?=?3.6).

Conclusions

Liming resulted in decreased soil Al3+ on 2xSBL coupled with increased soil Ca2+ on both 2xSBL and 2xMBL, which improved soil Ca/Al ratios. However, the soil Ca/Al ratio response was transitory, as exchangeable Al3+ increased and Ca/Al ratio decreased over time. Higher lime application rates may be necessary to obtain a substantial and longer-term improvement of cation-depleted soils at LGW.  相似文献   

3.
The effect of liming on the flow of recently photosynthesized carbon to rhizosphere soil was studied using 13CO2 pulse labelling, in an upland grassland ecosystem in Scotland. The use of 13C enabled detection, in the field, of the effect of a 4‐year liming period of selected soil plots on C allocation from plant biomass to soil, in comparison with unlimed plots. Photosynthetic rates and carbon turnover were higher in plants grown in limed soils than in those from unlimed plots. Higher δ13C‰ values were detected in shoots from limed plants than in those from unlimed plants in samples clipped within 15 days of the end of pulse labelling. Analysis of the aboveground plant production corresponding to the 4‐year period of liming indicated that the standing biomass was higher in plots that received lime. Lower δ13C‰ values in limed roots compared with unlimed roots were found, whereas no significant difference was detected between soil samples. Extrapolation of our results indicated that more C has been lost through the soil than has been gained via photosynthetic assimilation because of pasture liming in Scotland during the period 1990–1998. However, the uncertainty associated with such extrapolation based on this single study is high and these estimates are provided only to set our findings in the broader context of national soil carbon emissions.  相似文献   

4.
Effects of liming and boron fertilization on boron uptake of Picea abies   总被引:1,自引:0,他引:1  
The effects of liming on concentrations of boron and other elements in Norway spruce [Picea abies (L) Karst.] needles and in the mor humus layer were studied in long-term field experiments with and without B fertilizer on podzolic soils in Finland. Liming (2000+4000 kg ha-1 last applied 12 years before sampling) decreased needle B concentrations in the four youngest needle age classes from 6–10 mg kg-1 to 5 mg kg-1. In boron fertilized plots the corresponding concentrations were 23–35 mg kg-1 in control plots and 21–29 mg kg-1 in limed plots. Both liming and B fertilizer decreased the Mn concentrations of needles. In the humus layer, total B concentration was increased by both lime and B fertilizer, and Ca and Mg concentrations and pH were still considerably higher in the limed plots than controls. Liming decreased the organic matter concentration in humus layer, whilst B fertilizer increased it.The results about B uptake were confirmed in a pot experiment, in which additionally the roles of increased soil pH and increased soil Ca concentration were separated by means of comparing the effects of CaCO3 and CaSO4. Two-year-old bare-rooted Norway spruce seedlings were grown in mor humus during the extension growth of the new shoot. The two doses of lime increased the pH of soil from 4.1 to 5.6 to 6.1, and correspondingly decreased the B concentrations in new needles from 22 to 12 to 9 mg kg-1. However, CaSO4 did not affect the pH of the soil or needle B concentrations. Hence the liming effect on boron availability in these soils appeared to be caused by the increased pH rather than increased calcium concentration.  相似文献   

5.
Two wheat varieties with differing aluminium tolerance were grown in pots of acid soil. Liming did not change significantly the amounts of chemically extractable P and K, but caused improved vegetative growth, increased inflow of P and K and reduced uptake of Al. Without lime, roots had a higher content and concentration of P than shoots; liming reversed this. Without lime the sensitive variety with a shorter root length had an Al inflow ten times that of the tolerant one: tolerance involves a mechanism for exlcuding Al. The inflow of P per unit inflow of Al (mol ratio) without lime was three times greater for the tolerant variety which therefore has more P to counteract the effects of Al. The same varieties were grown in two-layer soil columns, with a low P status and a limed topsoil and acid subsoil. Liming the subsoil improved plant growth but this was still restricted by low P availability. Addition of P to the topsoil caused good growth regardless of subsoil acidity: root growth increased in both layers and P (labelled with32P) taken up from the topsoil was translocated to roots in the subsoil. This P inactivated root Al and allowed the roots to grow and take up more P from the acid subsoil with however a reduction in inflow. The sensitive variety was affected more by the acid subsoil and low P availability, had a similar ability to translocate P to subsoil roots but could not attain the growth rate of the tolerant wheat even with P and lime.  相似文献   

6.
R. A. Carran 《Plant and Soil》1991,134(1):107-114
Three pot experiments, in which causes of negative yield responses to liming were investigated, are reported. The soil used, Waimumu silt loam (Fragiochrept), differed from others that have been reported to show negative yield response to liming, in that it is only moderately weathered and leached, only moderately acid and has previously shown positive yield responses to liming. Deficiencies of Zn and Mg were identified, but limed (pH 6.8) soils still showed a 40% yield depression even where all nutrients were supplied daily. Phosphorus availability was little affected by liming, and despite Mg and Zn addition, yields were depressed at high lime (pH 6.4) and high P while plants showed leaf symptoms of Mg deficiency. Neither plant nor soil analyses indicated low Mg levels but Ca: Mg ratios in soil were 22:1. When a pH range 5.2–6.1 was produced by liming with CaCO3 and MgCO3 at ratios between 100:0, and 50:50 on an equivalent basis, negative yield response was eliminated at Ca:Mg of 50:50. There was no evidence that Mg was fixed or rendered unavailable at the higher pH levels. A Ca induced Mg deficiency arising when exchangeable Ca:Mg>20 is suggested as the cause. The role of variable surface charge in converting soils that respond positively to lime to a negative response condition is discussed.  相似文献   

7.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   

8.
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems.  相似文献   

9.
V. Wolters 《Oecologia》1989,80(3):405-413
Summary Data are presented on the influence of Athous subfuscus larvae (Coleoptera, Elateridae) on the microbial carbon cycle in the biotically most active horizons of three contrasting beech forest soils: the Ah horizon of a mull soil on limestone (Göttinger Wald, FRG), the F/H horizon of a moder soil on new red sandstone (Solling area, FRG) and in the F/H horizon of a lime ameliorated area close to the second site. Gut content analyses demonstrated that the larvae of A. subfuscus are humiphagous and that this unspecific feeding behaviour is widely independent of soil conditions. Differences in 14C incorporation demonstrated that only the larvae in the F/H horizon of the limed moder soil directly affected primary decomposer organisms. However, the burrowing activity of the larvae in the topsoil indirectly modified the time course of beech leaf-litter decomposition in the litter layer of all three soils. The microflora of the mull soil contained 2.6%, that of the moder soil 0.7% and that of the limed moder soil 2.2% of total C. The metabolic quotient (qCO2, 10°C) of the soil microflora was 0.0010 (mgCO2-C·mg-1 biomass-C·h-1) in the mull soil, 0.0034 in the moder soil and 0.0012 in the limed moder soil. The A. subfuscus larvae generally reduced the size of the microbial C pool (<-30%) and increased the metabolic quotient of the microflora (>+50%). Considering these soil-independent effects of A. subfuscus on the C turnover of the soil microflora, the burrowing activity of humiphagous soil arthropods may generally increase nutrient availability to primary producers. The results of this study reveal that some of the micro- and mesoscale effects of humiphagous arthropods on the microbial carbon turnover in beech forest soils are surprisingly similar, even under very different soil conditions. The long-term modification of the time course of leaf litter decomposition, in contrast, indicates that the influence of humiphagous arthropods on the formation of the humus layer is soil-specific. There are profound differences in the role of humiphagous arthropods in limed moder soils and in naturally base-rich soils. It is concluded that liming increases competition within the microfloral population due to accelerated humification. The negative effect of A. subfuscus on 14C mineralization in the limed substrate could thus be explained by its effects on a microflora that was strongly limited by the availability of carbon.  相似文献   

10.
A field experiment was conducted on an Ultisol in Malaysia to assess changes in soil solution composition and their effects on maize and groundnut yields, resulting from limestone and gypsum application. The results showed that soil solution Ca in the lime treatment remained mainly in the zone of incorporation, but in the gypsum treatment some Ca moved into 15–30 cm zone. Al3+ and AlSO4 + were dominant Al species in the soil solution of nil treatment. Liming decreased Al3+ and AlSO4 +, but increased hydroxy-Al monomer activities. However, gypsum application resulted in an increase of AlSO4 + activity and in a decrease of Al3+ activity. Relative maize and groundnut yields were negatively correlated with Al3+, Al(OH)2+ and Alsum activities. Likewise, relative yields were negatively correlated with Al concentration and the Al concentration ratio and positively correlated with soil solution Mg concentration and Ca/Al ratio.  相似文献   

11.
Changes in soil structure and aeration due to liming and acid irrigation   总被引:1,自引:0,他引:1  
Biologic activity is one of the main factors controlling the floating equilibrium between loosening and compacting forces in humic forest soils. Therefore it can be expected that both acid deposition and compensatory liming indirectly influence the soil structure and soil aeration. To measure macro-pore structure, CO2 concentrations in the soil air, and respiration rates we used naturally structured soil cores from the Höglwald forest-ecosystem research plots with experimental acid deposition and liming, but standardized water supply. Results are integrated in an one-dimensional soil-aeration model. Compared to the control plot, in the top soil of the limed plot both gaseous diffusion coefficients and respiration rates are increased. Since the CO2 concentration in the soil air is decreased at the same time, the soil aeration status of the whole profile can be regarded as stabilized. On the acid irrigated plot, gas-diffusion coefficients are not significantly changed with regard to the control. In the top-mineral soil, in contrast to the working hypothesis, they are tendencially increased. In the case of liming, a stimulation of biologic activity and a positive feedback on the soil structure could be attributed to an increased earth-worm activity due in turn to decreased acidity and enhanced feeding conditions. The acid irrigation leads to increased Al3+ activity, which can stabilize the soil structure.  相似文献   

12.
Liming is a forestry practice used to correct tree cation deficiency induced by soil acidity. Ectomycorrhizal (ECM) community structure and functioning is closely linked to soil nutrient availability, which is strongly affected by liming. The aim of this study was to assess the impact of liming on ECM community structure depending on soil horizon and tree host. Acidophilic species occurring in untreated plots, such as Russula ochroleuca, were absent from limed plots and were replaced by more generalist morphtoypes. The abundance of ECM root tips in the untreated plots was higher in topsoil layers, whereas most of the ECM root tips in the limed plots were in the organomineral layer, whatever the tree host. Liming was the major determinant of fungal community structure, then tree host.  相似文献   

13.
Assessing the phytotoxicity of mononuclear hydroxy-aluminum   总被引:6,自引:0,他引:6  
Abstract Al3+ is an important rhizotoxic ion in acid soils around the world. Al3+ is in equilibrium with mononuclear hydroxy-Al species, such as AlOH2+ and AL(OH)2+, but the toxicity of these species has not been determined. Polynuclear Al may also coexist with Al3+, and one of these species, AlO4Al12(OH)24(H2O)1274, is very toxic. In order to determine the toxicity of mononuclear hydroxy-Al we have reanalysed the results of previously published, solution-culture experiments and have performed new experiments. Several problems are inherent in these studies. At pH values less than 5.0, the activities of the mononuclear hydroxy-Al species are low relative to Al3+, but attempts to change the ratio by raising the pH generally initiate the formation of polynuclear Al. (We discovered that mononuclear solutions are stable for many days when {Al3+}/{H+}3≤ 108.8, where braces denote activities.) We avoided, or accounted for, polynuclear Al in our studies. In addition, we used up-to-date equilibrium constants to compute Al species, very simple culture media (generally containing CaCl2, AlCl3 and HCl as the only inputs), short-term (2d) growth, and an Al-sensitive wheat variety (Triticum aestivum L. cv. Tyler) that permitted low Al levels and, consequently, higher pH values without Al polymerization. Experiments were designed in which the solutions were constant in {Al3+} and variable in mononuclear hydroxy-Al or were orthonal (factorial) in {Al3+} and {AlOH2+}. Linear and nonlinear, simple and multiple, regression analyses of these and previous experiments failed to reveal any toxicity for mononuclear hydroxy-Al to Tyler wheat.  相似文献   

14.
Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems.  相似文献   

15.
Bakker  M.R.  Kerisit  R.  Verbist  K.  Nys  C. 《Plant and Soil》1999,217(1-2):243-255
Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L > G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L > G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L > G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L > G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Two well-characterized crystalline ferric phosphates, two colloidal ferric phosphates, and fluorapatite were tested under greenhouse conditions as sources of phosphorus for corn over a 3-cropping period. The selected compounds are representative of those expected to form in soils as reaction products from more soluble phosphate fertilizers.Strengite, FePO4·2H2O, was completely unavailable in acid soils and gave only a slight phosphorus response on soils limed to pH 7.6. Uptake of P from hydrogen ammonium ferric phosphate, H8NH4Fe3(PO4)8·6H2O, was approximately 70 per cent that from MCP, and increased with cropping.The colloidal ferric phosphates were approximately 78 per cent as available as MCP and became more available with liming and cropping. In the soil limed to pH 6.5, their effectiveness increased from 47 per cent that of MCP in the first crop to 100 per cent as effective by the third crop.Fluorapatite, included as an insoluble calcium phosphate source, was completely unavailable.  相似文献   

17.
Soil management practices that involve additions of organic materials may influence plant sulfur availability in highly-weathered, acid soils. This study evaluated the effects of organic additions on sulfate adsorption and sulfur availability in a limed (3,4 t ha-1) and unlimed Typic Haplustox soil of the Cerrado Region of Brazil. In unlimed soil, the proportion of applied sulfate (600 kg S ha-1 as gypsum) that was adsorbed temporarily decreased over two cropping seasons by incorporation of 10 t dry matter ha-1 crop-1 of guinea grass (Panicum maximum Jacq.) but not when a similar quantity of a tropical legume, feijâo de porco (Canavalia ensiformis L.), was added. Liming reduced sulfate adsorption and resulted in sulfate leaching to a depth of 30 to 45 cm. Both plant materials temporarily reduced sulfate adsorption in laboratory studies when added to an unlimed soil at a rate equivalent to 40 t ha-1. Analysis of soil properties affected by organic additions and liming showed significant correlations between sulfate adsorption and soil pH, extractable aluminum, calcium and magnesium, and surface charge. Maize dry matter yields increased by 1.3 to 3.5 t ha-1 with addition of both organic materials. However, only the feijâo de porco treatment resulted in increases in sulfur uptake for the years in which organic materials were applied. Determining the effects of organic material additions on plant sulfur availability is complicated by the combined effects of sulfur mineralization, sulfate adsorption, and the plant's ability to utilize adsorbed subsoil sulfate.Joint contribution of Cornell University and CPAC-EM- BRAPA. This research was supported by USAID through the Title XII CRSP subgrant SM-CRSP-10 from North Carolina State University  相似文献   

18.
Summary Two acid soils showing different Al solubility as a function of pH were limed to a range of pH values (in 10–2 M CaCl2) between 4.1 and 5.6. The apparent critical pH for the growth of barley in pots was 0.25 lower in the soil showing lower Al solubility. The addition of phosphate reduced exchangeable and soluble Al in the soils, and lowered the apparent critical pH by 0.35 while maintaining the difference between the soils. The Al concentration at the critical pH, measured after cropping to take account of the treatment effects on soil Al, also varied with soil and with phosphate addition. These apparent critical values of both pH and soluble Al varied linearly with available phosphate, over the range 18 to 73 mg P/kg soil, as follows: pH from 4.9 to 4.3; soluble Al, from 0.010 mM to 0.056 mM; and the soluble Ca/Al mole ratio, from 1270 to 214.  相似文献   

19.
Abstract. Question: What is the long‐term influence of nutrient availability, productivity and soil pH on grassland community organization? Location: Ukulinga research farm, KwaZulu‐Natal, South Africa. Methods: The influence of fertilization on soil pH, nitrogen (N) and phosphorus (P) on variation in plant traits, community composition and species richness were examined in a 50‐year grassland fertilization experiment. Results: Averaged over 30 years, above‐ground net primary production (ANPP) was 337, 428 and 518 g.m‐2 in sites not fertilized, fertilized with N, and fertilized with N plus P respectively. ANPP depended directly on N‐fertilization but not on P‐fertilization or liming, and responded positively to the interaction of N (first limiting nutrient) and P (second limiting nutrient). Short narrow‐leaved grass species —Themeda triandra, Tristachya leucothrix and Setaria nigrirostris— dominated sites of lowest ANPP where N was limiting (unfertilized, P‐fertilized or limed sites). A tall narrow‐leaved species, Eragrostis curvula, dominated sites of intermediate ANPP where P was limiting (N‐fertilized sites). By contrast, a tall broad‐leaved species, Panicum maximum, dominated the most productive sites where neither N nor P were limiting (N‐ and P‐fertilized sites). Certain species responded to liming and type of N‐fertilizer apparently because of their effects on soil pH. N‐fertilization reduced the density of herbaceous dicots (forbs) from 14 (unfertilized) to two (high N, no P, no lime) and five species per m2 (high N, no P, limed). This effect was attributed to increased ANPP and a decrease in soil pH from 4.6 (KCl) in unfertilized sites to 3.49 (high N, no lime) and 4.65 (high N and lime). Soil acidification had no effect on grass species richness but influenced the abundance of certain species. Conclusions: Grassland community organization is determined not only by the influence of N availability, but also by the hierarchical interaction of N and P availability, in part through their compounded effect on ANPP, and by individualistic species responses to soil pH.  相似文献   

20.

Background and Aims

Field studies have demonstrated that aluminum (Al) toxicity is low in no-till systems during cropping seasons that have adequate and well-distributed rainfall. This study evaluated the performance of corn (Zea mays L.) and soybean (Glycine max L. Merrill) on an acid loamy soil under a long-term no-till system, in response to surface liming and as affected by genotypic tolerance to Al and water stress.

Methods

A field trial examined the effect of surface application of lime (0, 4, 8, and 12 Mg ha?1) on no-till corn and soybean nutrition and yield. Trials were also carried out in undisturbed soil columns taken from the unlimed and limed plots. Two hybrids/cultivars of corn and soybean, one sensitive and the other moderately sensitive to Al were grown at two soil moisture levels with and without water stress (50 % and 80 % water filled pore space).

Results

Alleviating soil acidity by liming improved nutrition and increased grain yields of corn and soybean. The benefits of liming on root length density, nutrient uptake and shoot biomass production of corn and soybean were more pronounced in Al-sensitive genotypes under water stress.

Conclusions

The results suggest that plants exposed to drought stress under no-till systems are more affected by Al toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号