首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Factors affecting anther culturability of recalcitrant barley genotypes   总被引:6,自引:0,他引:6  
One major problem encountered with cereal anther culture is that some genotypes are low or non-responders to the technique. The objective of this study was to improve anther culture efficiency of recalcitrant barley (Hordeum vulgare L.) genotypes. Reciprocal F1s between the two low responsive cultivars, Morex and Steptoe, were used. These were chosen because doubled haploids (DH) were required from these genotypes for the North American Barley Genome Mapping project. Ficoll 400 at 200 g l–1 in the induction medium significantly increased green plant production compared to four other media formations containing different gelling/viscosity modifying agents. Cold pretreatment of donor spikes of 28 vs 14 d resulted in an increase in embryoid, total plant and green plant production. Anther culture response in these experiments was little influenced by donor plant growth conditions. Indole-3-acetic acid (1 mg l–1) or 1-naphthaleneacetic acid (2 mg l–1) in the induction medium did not affect anther culturability or plant regeneration. Based on this research, the negative genotypic effect for doubled haploid production could be diminished, which is desirable for practical application.Abbreviations BAP 6-benzylaminopurine - IAA Indole-3-acetic acid - LS Linsmaier & Skoog - NAA 1-naphthaleneacetic acid - DH doubled haploid  相似文献   

2.
Plating rice anthers on a semisolid induction medium containing 250 or 500 mg/l colchicine for 24 or 48 h-incubations followed by transfer to colchicine-free medium and standard anther culture procedures resulted in overall 1.5- to 2.5- fold increases in doubled haploid green plant productions compared to control anther cultures. The addition of colchicine had no detrimental effects on the different anther culture efficiency parameters, but in some treatments led to significant enhancement of anther callusing frequency or callus green plant regenerating ability. The most efficient treatment raised doubled haploid plant recovery from 31% to 65.5%. These results suggest that post-plating colchicine treatment of anthers, since it was found to improve both anther culture efficiency and doubled haploid plant recovery frequency, could be integrated into rice doubled haploid plant production programmes.Abbreviations DH doubled haploid - NAA naphthalenacetic acid - PAS periodic acid Schiff  相似文献   

3.
Doubled haploid (DH) production is an efficient tool in barley breeding, but efficiency of DH methods is not consistent. Hence, the aim of this study was to study the effect of n-butanol application on DH barley plant production efficiency. Five elite cultivars of barley and thirteen breeding crosses with different microspore embryogenesis capacities were selected for n-butanol application in anther and isolated microspore cultures. Application of 0.1 % n-butanol after a mannitol stress treatment in anther culture significantly increased the number of embryos (up to almost twice) and green plants (from 1.7 to 3 times) in three low-responding cultivars: Albacete, Astoria and Majestic. No significant differences on microspore embryogenesis efficiency were observed in medium and high responding cultivars. The application of n-butanol treatment to isolated microspores from cold treated spikes in thirteen spring breeding crosses with a low or very low androgenetic response did not have a significant effect on the overall number of green plants. Nevertheless, an increase in the number of green plants was observed when 0.2 % n-butanol was applied in four out of seven low-responding crosses. Therefore, application of n-butanol could be routinely applied to anther cultures using mannitol treatment, in low-responding material. However, further studies are needed to determine optimal conditions in protocols using cold treatment and isolated microspore cultures.  相似文献   

4.
Anther culture was used to generate microspore-derived doubled haploid (DH) plants from four spring barley crosses. The culture medium used contained maltose as the sole carbohydrate source and the mode of plantlet regeneration was mainly via pollen embryogenesis. Both haploid and spontaneously doubled regenerants were produced and the doubled haploids were compared to recom-binant inbred lines generated by several rounds of selfing (single seed descent). Parental, DH and single seed descent (SSD) lines were grown in randomised, replicated field trials and the samples were scored for a range of agronomic traits. The mean performance and phenotypic distribution of the DH and SSD samples were similar and there was little evidence to support the conclusion that anther culture derived lines exhibit a reduction in vigour. Where significant differences were detected between groups these were mainly confined to crosses which were segregating for the denso dwarfing gene. The differential transmission of particular regions of the barley genome may therefore influence and confound the expression of agronomic traits in DH populations. This is the first report of the agronomic performance of anther culture lines produced via pollen embryogenesis and the results are discussed in relation to the exploitation of anther culture technology in barley breeding.  相似文献   

5.
Summary To investigate whether the Hordeum bulbosum system of doubled haploid production generates gametoclonal variation, populations of second generation doubled haploid lines were developed from first generation doubled haploid lines of two barley varieties and three wheat genotypes. In barley, no variation between doubled haploids from doubled haploids was detected for a range of quantitative characters, suggesting the absence of any gametoclonal effects. However, the original selfed-seed stocks were shown to contain cryptic allelic variation for some of the characters investigated. In wheat, gametoclonal variation was detected for ear emergence time, plant height and yield, and its components for two out of the three genotypes investigated. The type and range of variation was similar to that reported from studies of somaclonal variation from immature embryos and gametoclonal variation from anther culture. Generally, the effects appeared to reduce the yield performance of individual lines. The difference in response between the two species and the consequences for the use of the doubled haploid system in breeding programmes are discussed.  相似文献   

6.
The embryoid formation and plant regeneration in anther cultures of three barley (Hordeum vulgare L.) cultivars (Niki, Karina, Thermi), one F1 hybrid (Niki × Thermi), two F2 populations (Niki × Thermi, Niki × Karina), and two F3 populations (Niki × Thermi, Niki × Karina) were investigated in two solid induction media after cold pretreatment for 14 and 28 days at 4°C . The media used (N6 and FHG) differed in their composition and source of energy (maltose in FHG vs. sucrose in N6). Embryoid frequency and green plant regeneration depended on both the induction medium composition and cold pretreatment. The combination of the FHG induction medium with 28-day-long cold pretreatment was the most efficient in haploid embryoid formation and green plant production. In addition, the green plant production was genotype-dependent. Cv. Thermi and F1 hybrid Niki × Thermi exhibited the highest frequency of green plant production. The parent with high or even moderate frequency of embryoid formation in anther culture could lead to the effective production of green plants from the F1 hybrid or the F2 generation for breeding purposes.  相似文献   

7.

Key message

An improved isolated microspore culture protocol alleviating the recalcitrance typically observed in six-row spring barley was developed by optimizing four key physical factors to increase embryogenesis and reduce albinism.

Abstract

Doubled haploid (DH) plants are completely homozygous individuals that can be generated in just a few months via androgenesis in vitro. DHs are useful tools in genetic research and in plant breeding. Isolated microspore culture (IMC) is the most efficient way to produce DHs, but a strong genotype dependency imposes limitations to its wide application. Six-row, spring barley genotypes are considered as particularly recalcitrant due to a low frequency of embryogenesis and a high rate of albinism. Seeking to develop an efficient IMC protocol for this type of barley, we explored four important factors: (1) the harvest stage of immature spikes, (2) the type of pretreatment applied, (3) the osmotic potential in the induction medium, and (4) the plating density of microspores. This work was first performed using four barley genotypes: two typical six-row spring cultivars (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) cultivar. First, by optimizing the harvest stage for each genotype we obtained a twofold to fourfold increase in the yield of embryogenic microspores. Second, two pretreatments (0.3 M mannitol for 2 days, or a combination of cold and heat over 15 days) both performed significantly better than the commonly used cold pretreatment (28 days at 4 °C). Third, an induction medium-containing mannitol (32 g/l) doubled green plant regeneration. Fourth, a plating density of 106 microspores/ml yielded the highest number of green regenerated plants. Our most important findings were then confirmed using sets of F1s from a six-row, spring-type breeding program.  相似文献   

8.
Development of an efficient and cost-effective doubled haploid production system in flax (Linum usitatissimum L.) is the prerequisite for the application of doubled haploid technology in a practical breeding program. Pre-culture of anthers on a medium containing 15% sucrose for 2–7 days before transfer to the same medium containing 6% sucrose for a total of 28 days culture period significantly increased shoot regeneration for all four genotypes evaluated. Moreover, pre-culture of anthers on medium containing 15% sucrose for 2–7 days was sufficient to dramatically reduce the frequency of shoot regeneration from somatic tissues and thereby to increase the frequency of microspore-derived plants in flax anther culture. Furthermore, replacing 15% sucrose with 6% sucrose and 9% polyethylene glycol (PEG), or 3% sucrose and 12% PEG, in pre-culture medium did not significantly affect callus induction and shoot regeneration. The results indicate that sucrose may act as carbon/energy source as well as an osmotic regulator in flax anther culture. Sucrose as an osmotic regulator may be replaced by a non-metabolizable osmoticum: PEG. The implication of this study in flax anther culture and breeding is discussed.  相似文献   

9.
Various systems of anther and microspore cultures were studied to establish an efficient doubled haploid production method for Indonesian hot pepper (Capsicum annuum L.). A shed-microspore culture protocol was developed which outperformed all the previously reported methods of haploid production in pepper. The critical factors of the protocol are: selection of flower buds with more than 50% late unicellular microspores, a 1 day 4°C pretreatment of the buds, followed by culture of the anthers in double-layer medium system for 1 week at 9°C and thereafter at 28°C in continuous darkness. The medium contained Nitsch components and 2% maltose, with 1% activated charcoal in the solid under layer and 2.5 μM zeatin and 5 μM indole-3-acetic acid in the liquid upper layer. All the ten genotypes of hot pepper tested, responded to this protocol. The best genotypes produced four to seven plants per original flower bud. This protocol can be used as a potential tool for producing doubled haploid plants for hot pepper breeding.  相似文献   

10.
Caraway (Carum carvi L.) is a traditional medicinal and spice cross-pollinated plant species. Although in vitro techniques are recently extensively applied in plant breeding programmes, these are not commonly utilized in caraway. Therefore, based on the protocol for anther culture in carrot (Daucus carota L., a closely related species of caraway in Daucaceae family), in vitro androgenesis in caraway has been studied with the aim to produce completely homozygous inbred lines. Various induction conditions, such as temperature pretreatments, carbon sources and combination of growth regulators in a culture medium as well as the effect of genotype on in vitro androgenesis were examined. Ten breeding lines of winter caraway representing third generation of forced (artificial) self-pollination were used as donor plant material. Cultured anthers produced embryogenic calli, and subsequently two types of regenerated plants were obtained, namely haploids with evident microspore origin, and diploids which may represent somatic (anther wall) regenerants or spontaneous doubled haploids. The ploidy status of regenerated plants was determined by flow cytometry. This is the first report on androgenic doubled haploid production in caraway.  相似文献   

11.

The efficiency of embryogenesis of anther culture was compared using four cultivars of oat (Avena sativa L.): ‘Akt’, ‘Bingo’, ‘Bajka’, and ‘Chwat’. Despite the high resistance of oat to the process of androgenesis, all tested cultivars produced embryo-like structures and only two of them, ‘Akt’ and ‘Chwat’, produced fertile doubled haploid plants. A strong cultivar dependency was observed during induction of androgenesis. Further, cold pretreatment together with high temperature shock enhanced the efficiency of this technique. The highest number of embryo-like structures and haploid plants was obtained from cv. ‘Chwat’ (3.6% and 0.8%, respectively). Embryo-like structure formation also depended on the distance from the base of the flag leaf to the penultimate leaf of the panicle. Most of them were observed on anthers harvested from panicles of which the distance from the base of the flag leaf to the penultimate leaf was less than 4 cm. The presence of the induction medium supplemented with different plant growth regulators was essential for the induction of embryo-like structures but did not increase the production of haploid plants and doubled haploid lines. The highest number of embryo-like structures and plants was obtained on W14 medium with the addition of 2.0 mg/dm3 2,4-dichlorophenoxyacetic acid and 0.5 mg/dm3 kinetin (2.7%). The low haploid plant regeneration rate (from 0.03 to 0.05%) still limits the practical application of anther culture for the production of doubled haploid lines in oat.

  相似文献   

12.
A number of methods have been published for barley (Hordeum vulgare L.) anther culture and have gained acceptance in different laboratories. The breeder's requirement is for a compromise method that gives good, repeatable results for a wide range of genotypes. Yet the routine production of spontaneously doubled haploid green regenerants remains difficult. Despite attempts to formulate a widely-applicable anther culture method, the 4 main published methods, compared here with one modified procedure, are quite distinct for a number of important characteristics. The methods interacted strongly with the 3 genotypes, and response ranged from zero to 28 green regenerants per 100 anthers plated. The current methods still require often substantial modification to suit local situations in order that the technology may be exploited by barley breeders.Abbreviations BAP benzylaminopurine - DH doubled haploid - FV final volume - IAA indoleacetic acid - IBA indole-3-butyric acid - MS Murashige & Skoog - PABA para-aminobenzoic acid  相似文献   

13.
In Triticum turgidum subsp. durum (Desf.) Husn., the utilization of in vitro anther culture is hampered by the very high frequency of albinism of the regenerated plants reaching in most cases 100%. Only in vitro ovary culture or intergeneric crosses with maize produce gynogenetic green haploid and doubled haploid plants. This paper is concerned with another very interesting method of androgenetic doubled haploid plant production, the in vitro isolated microspore culture. It is shown that this method, associated with cold alone or cold plus mannitol pre-treatments, of the spikes kept within their sheath leaves, during different times, have significant positive effects, not only on embryo production, but also on chlorophyllian plant regeneration. All pre-treatments and control taken together, a total of 16 490 embryos was obtained from 17.4 x 10(6) microspores of two T. durum varieties, among which 9320 embryos were transferred to regeneration medium and developed 150 chlorophyllian plants. Thus a long-term (five weeks) 4 degrees C cold pre-treatment of the microspores could be promising for green regeneration in durum wheat.  相似文献   

14.
Anther culture and maize hybridization are two frequently used techniques for doubled haploid production in wheat (Triticum aestivum L.). Information on the field performance of lines derived from these techniques is limited. This study was conducted to compare the performance of F4:6 lines obtained by single-seed descent with lines obtained by anther culture and maize (Zea mays L.) pollination from the same cross of spring wheat, ’Chris’/MN 7529. Thirty-three lines derived from each of those techniques were evaluated in six environments for grain yield, protein content, test weight, heading date, kernel weight and plant height. Mean performance of the single-seed descent lines exceeded performance of the anther culture lines for grain yield, kernel weight and plant height with no apparent differences for grain protein content, test weight and heading date. No differences between trait means for the single-seed descent and maize pollination lines were found except for plant height. The best 5 lines from each method for grain yield, protein content and test weight were similar in performance except that the protein content was higher for the maize pollination lines than for the single-seed descent lines. Acceptable levels of agronomic performance could be found among lines from each method. Wide acceptance of the doubled haploid technique for pure line production in breeding programs may, however, be limited by the often poor efficiency of doubled haploid line production, resulting in smaller population sizes for selection of desirable traits in comparison to the single-seed descent method. Received: 31 July 1998 / Accepted: 28 November 1998  相似文献   

15.
The production of doubled haploid (DH) plants from microspores is an important technique used in plant breeding programs and basic research. Although doubled haploidy efficiencies in wheat and barley are sufficient for breeding purposes, oat (Avena sativa L.) is considered recalcitrant. The objective of this project was to develop a protocol for the production of microspore-derived embryos of oat and further develop these embryos into fertile DH plants. A number of experiments were conducted evaluating the factors influencing microspore embryogenesis, i.e. donor plant conditions, pretreatments, media composition, and culture conditions. The initial studies yielded little response, and it was not until high microspore densities (106 microspores/mL and greater) were used that embryogenesis was achieved. Depending on the treatment, yields of over 5,000 embryos/106 microspores were obtained for breeding line 2000QiON43. The doubled haploidy protocol includes: a 0.3 M mannitol pretreatment of the tillers for 7 days, culture in W14 basal medium with a pH of 6.5–7.5, a microspore density of 106 microspores/mL, and continuous incubation at 28 °C incubation. The resulting embryos observed after 28 days were plated onto solidified W14 medium with 0.8 or 1.0 g/L activated charcoal. A colchicine treatment of 0.2 % colchicine for 4 h resulted in conversion of 80 % of the plants from haploid to DH. This protocol was successful for the production of oat microspore-derived embryos and DH green plants with minimal albinism. DH seed was produced and planted for evaluation in a field nursery.  相似文献   

16.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

17.
Summary We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid line.  相似文献   

18.
Anthers from seven unselected commercial sweetcorn lines andten experimental maize lines were cultured on a liquid/solidbi-layer culture medium, containing 13 % maltose as the carbonsource. Mean anther efficiencies (number of embryos per 100anthers plated) of 0 to 27.6 % were recorded, with the maximumefficiency of 57.1 % from one plant. The anther efficiency wasfound to be dependent on genotype, microspore developmentalstage and the growth temperatures of donor plants. Immaturemicrospores were found to continue their development duringthe cold pretreatment of the spikes, and this in turn influencedthe level of response to culture. Direct regeneration of embryoidsto plants occurred most frequently when well formed uni- orbi-polar embryos were produced. The quality of embryo producedwas apparently inversely correlated with the number of embryosproduced. Zea mays, haploid culture, embryos, microspores  相似文献   

19.
Male (anther culture) and female (Hordeum bulbosum) derived, doubled haploid populations were used to map the barley genome and thus determine the different recombination rates occurring during meiosis in the F1 hybrid donor plants. The anther culture-derived (male recombination) population showed an 18% overall increase in recombination rate. This increased recombination rate was observed for every chromosome and most of the chromosome arms. Examination of linkage distances between individual markers revealed eight segments with significantly higher recombination in the anther culture-derived population, and one in the Hordeum bulbosum-derived population. Very strong distortions of single locus segregations were observed in the anther culture-derived population, but map distances were not affected significantly by these distortions. There were 1.047 and 0.912 recombinations per chromosome in the anther culture and Hordeum bulbosum-derived doubled haploid populations, respectively.  相似文献   

20.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号