首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3–5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.This work was supported by Grant-in-Aid for Scientific Research to promote 2001-Multidisciplinary Research Projects in 2001–2005, and KAKENHI (C) (nos. 12671765 and 14571727 to H.O.) from MEXT  相似文献   

2.
3.
A Callé 《Acta anatomica》1985,122(3):138-144
Intercellular junctions in the odontoblastic layer have been studied with a freeze-fracture technique. Children's tooth germs were fixed, sliced and demineralized. Samples of the pulpodentinal border were routinely prepared for freeze-fracture. Three kinds of intercellular junctions were detected between human odontoblast cell bodies: gap junctions, desmosomes and tight junctions. Numerous gap junctions are responsible for intercellular communication at different levels of the cell bodies. Focal tight junctions, parallel to the axis of the cell, and desmosomes are sites of cell-to-cell adhesion between lateral plasma membranes. At the distal end of the cell bodies, junctional complexes consist of zonular tight junctions and gap junctions. These zonular tight junctions, never before described between odontoblasts, contribute to the pseudo-epithelial organization of the odontoblastic layer. They constitute a predentin-pulp barrier, the permeability of which must be studied to establish their role in relation to dentin formation.  相似文献   

4.
5.
Rat dentin contains a major sialic acid-rich glycoprotein, DSP, with an overall composition similar to that of bone sialoproteins but whose biological role in dentinogenesis is unknown. Using polyclonal affinity-purified antibodies to rat DSP and four immunohistochemical methods of detection, we studied the cell and tissue localization of DSP and the time course of its appearance during odontoblast differentiation. DSP first appeared within young odontoblasts concomitant with early secretion of pre-dentin matrix and before the onset of mineralization but was absent in pre-odontoblasts. DSP immunostaining also localized within secretory odontoblasts and was intense in odontoblastic processes. Early pre-dentin stained positive for DSP, in contrast to more mature pre-dentin, where immunoreactivity was less intense and more restricted to odontoblastic processes. In the zone of mineralized dentin matrix, a moderate and uniform staining pattern was evident. Intense immunostaining was also seen within the cells and matrix of dental pulp during dentinogenesis. Other cells and tissues within the tooth organ and those surrounding it were non-reactive. These findings suggest that DSP is developmentally expressed in cells of the odontoblastic lineage and may be a biochemical marker of odontoblastic activity.  相似文献   

6.
Summary The ultrastructure of odontoblasts of deciduous teeth from two human fetuses (CRL 159 and 195 mm) was investigated. The human odontoblast is a polarized cell with a characteristic localization of its organelles and demonstrates similarities with odontoblasts from non-human materials. Vesicular and granular elements were found to be formed in the Golgi complex, and these elements were also observed in the odontoblastic process, thereby indicating a secretory process. No special organization of the predentinal collagen fibrils was observed. In the newly formed dentin a thin sheath of non-mineralized material was seen to surround the odontoblastic process. The ultrastructural findings are correlated to the findings of recent histochemical investigations.We would like to thank chief-surgeon A. Christensen, Bispebjerg Hospital, Copenhagen for his help in acquiring fetal material. For technical assistance we would like to thank M. Balslev and U. Eberth, Anatomy Department A. This work was supported by grants from the Association for the Aid of the Crippled Children, New York, and Statens almindelige Videnskabsfond, Copenhagen.  相似文献   

7.
Gestational diabetes mellitus (GDM) is an important factor involved in the pathogenesis of organ development in the offspring. Here, we analyzed the effects of GDM on odontoblastic differentiation of dental papilla cells (DPCs) and dentin formation in offspring and investigated their underlying mechanisms. A GDM rat model was induced by intraperitoneal injection of streptozotocin and offspring were collected. The results showed that GDM significantly affected odontoblast differentiation and dentin formation in offspring tooth. GDM activated the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-ĸB) signaling pathway and inhibited SMAD1/5/9 signaling to modulate the odontoblastic differentiation of DPCs in offspring. Inhibition of TLR4 signaling by treated with TAK-242 significantly reverses the suppression of odonto-differentiation of DPCs in diabetic offspring. Taken together, these data indicate GDM activated the offspring DPCs TLR4/NF-ĸB signaling, which suppressed the SMAD1/5/9 phosphorylation and then inhibited odontoblasts differentiation and dentin formation.  相似文献   

8.
High-affinity tyrosine kinase A (trkA) neurotrophin receptors on neurons and nonneuronal cells elicit differentiation or survival functions in response to nerve growth factor (NGF), whereas the low-affinity neurotrophin (p75) receptor modulates trkA activity or can independently cause apoptosis or NFkappaB-mediated survival functions. We examined dental tissues for the presence of trkA-like immunoreactivity (trkA-IR), to determine which nonneuronal cell types express it in normal compared with inflamed teeth and how the trkA-positive cells relate to those expressing the p75 receptor and/or NGF. Normal and injured rat molars (dentin cavity for 4 h, 16-24 h, 3 days, 16 days, or 5 weeks) were immunoreacted using the ABC detection system for two anti-trkA antibodies (sTA, Santa Cruz Biotechnology; rTA, L. Reichardt) and antibodies against p75 and NGF, all of which also stained pulpal nerve fibers. We report that, when using the sTA antibody (recognizing the intracellular carboxy terminal), nonneuronal trkA-IR was found in odontoblasts of normal teeth and also in invading polymorphonuclear leukocytes (PMNs) and reparative odontoblasts after injury. When using rTA (recognizing the extracellular domain of the receptor), nonneuronal trkA-IR was only found in odontoblasts. Odontoblasts also had NGF-IR but did not label for NGF mRNA. The lack of odontoblast NGF mRNA suggests that NGF is passed from fibroblasts to the adjacent odontoblasts, where it is picked up by receptor-mediated mechanisms for regulation of odontoblast function. Tooth injury disrupts this system such that trkA-IR decreases in injured odontoblasts, p75 decreases in fibroblasts, and NGF is upregulated by fibroblasts and accumulates in the injured pulp and surviving odontoblasts. Pulpal NGF may contribute to chemoattraction for the invading leukocytes or their sTA-IR may have been induced in response to pulpal NGF. Thus, tooth pulp has a different distribution of nonneuronal NGF and its paracrine receptors during inflammation compared with normal conditions.  相似文献   

9.
Nel-like molecule-1 (Nell-1) is a recently discovered secreted protein that plays an important role in osteoblast differentiation, bone formation, and bone regeneration. However, its expression and distribution during tooth development are largely unknown. The aim of this study was to investigate the expression patterns of Nell-1 during murine molar development by immunohistochemistry. Nell-1 protein was expressed during molar development in embryonic and postnatal Kunming mice, but its expression levels and patterns at various developmental stages differed. At embryonic day 13.5 (E13.5) and E14.5, Nell-1 was found in both the entire enamel organ and the underlying mesenchyme. At E16.5, it was detected in the inner and outer enamel epithelia, stratum intermedium, secondary enamel knot, and dental papilla. At E18.5, Nell-1 was expressed in the differentiating ameloblasts, differentiating odontoblasts, and stratum intermedium. Positive staining was also found in the outer enamel epithelium. At postnatal day 2.5 (P2.5), P5, and P7, Nell-1 appeared in the secretory and mature ameloblasts and odontoblasts (odontoblastic bodies and processes) as well as immature enamel. Hertwig’s epithelial root sheath also stained positively at P7. At P13.5, positive staining was restricted to the reduced dental epithelium and odontoblasts, whereas Nell-1 disappeared in the mature enamel. During tooth eruption, Nell-1 was observed only in the odontoblastic bodies, odontoblastic processes, and endothelial cells of blood vessels. The spatiotemporal expression patterns of Nell-1 during murine tooth development suggest that it might play an important role in ameloblast and odontoblast differentiation, secretion and mineralization of the extracellular enamel matrix, molar crown morphogenesis, as well as root formation.  相似文献   

10.
The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300–360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.This work was supported in part by a grant from MEXT to promote 2001-multidisciplinary research project (in 2001–2005), KAKENHI (B) to H.O. (no. 16390523), and Daiwa Securities Health Foundation, Japan.  相似文献   

11.
The collagenous fibers of von Korff pass from the dentin matrix between the odontoblasts into the dental pulp. Although collagen fibrils are known to be present between odontoblasts, the existence of von Korff fibers has remained controversial. This may be because their continuity between the dentin matrix and the pulp has not been demonstrated ultrastructurally. In this study we have examined the odontoblast layer in the middle to apical regions of perfusion-fixed permanent canine teeth of cats by using transmission electron microscopy. Ultrathin sections of demineralized specimens revealed frequent bundles of collagen fibrils 1) entering the odontoblast layer from the predentin, 2) present between odontoblast cell bodies, and 3) passing from between the odontoblasts into the pulp. The question of continuity of these bundles from the predentin, across the odontoblast layer into the pulp was examined in ultrathin serial sections. Unbroken continuity of a collagen bundle from the predentin between the odontoblasts into the pulp was established in a reconstruction of one series of 22 serial sections and was very strongly suggested by a number of other series in which the numbers of available sections restricted their full visibility. This investigation has shown, therefore, that classical von Korff fibers are present and that these fibers are present in fully erupted teeth with closed apices, i.e., at a time when secondary circumpulpal dentinogenesis is in progress. The findings call for a reexamination of the question of von Korff fibers during mantle dentinogenesis and primary circumpulpal dentinogenesis. Resolution of their existence at the earlier stages of dentinogenesis should be possible by using the ultrathin serial-sectioning technique.  相似文献   

12.
S100-immunoreactivity (ir) was examined in tooth pulp primary neurons of the rat. An immunofluorescence method demonstrated that the molar tooth pulp contained S100-immunoreactive (ir) nerve fibers. In the root pulp, pulp horn and roof of the pulp chamber, S100-ir smooth and varicose fibers ramified and formed subodontoblastic nerve plexuses. All the fibers became varicose at the base of the odontoblastic layer and extended to the odontoblastic layer. Some varicose endings could be traced into the dentin. The trigeminal neurons retrogradely labeled with fluorogold (FG) from the first and second maxillary molar tooth pulps exhibited S100- and parvalbumin-ir. Approximately 60% and 24% of the labeled cells were ir for S100 and parvalbumin, respectively. Virtually all parvalbumin-ir FG-labeled cells showed S100-ir, while 40% of S100-ir ones coexpressed parvalbumin-ir. An immunoelectron microscopic method revealed that all myelinated axons and half of the unmyelinated axons in the root pulp contained S100-ir. In the odontoblastic layer, predentin and dentin, S100-ir neurites lost the Schwann cell ensheathment and made close contact with cell bodies and processes of odontoblasts. The odontoblastic layer also contained parvalbumin-ir neurites. These neurites were devoid of the Schwann cell ensheathment and in close apposition to cell bodies and processes of odontoblasts. S100-ir pulpal axons seemed to be insensitive to repeated neonatal capsaicin treatment. This study suggests that S100-ir tooth pulp primary neurons are mostly myelinated and that S100-ir unmyelinated axons in the root pulp are preterminal segments of myelinated stem axons.  相似文献   

13.
The cells of the subodontoblastic cell-rich layer in dental pulp are speculated to contain odontoblast progenitor cells because of their positional relationship with odontoblasts as well as their high alkaline phosphatase (ALP) activity. However, it has yet to be determined whether these cells have the ability to differentiate into odontoblastic cells. In the present study, we firstly found that the majority of cells in the subodontoblastic layer expressed Thy-1, a cell-surface marker of stem and progenitor cells. Then, we evaluated the capacity of Thy-1 high- and low-expressing (Thy-1(high) and Thy-1(low)) cells separated from rat dental pulp cells by use of a fluorescence-activated cell sorter to differentiate into hard tissue-forming cells in vitro and in vivo. Following stimulation with bone morphogenetic protein-2, Thy-1(high) cells in vitro showed accelerated induction of ALP activity and formation of alizarin red-positive mineralized matrix compared with Thy-1(low) cells. Furthermore, subcutaneous implantation of Thy-1(high) cells efficiently induced the formation of bone-like matrix. These results collectively suggest that Thy-1-positive dental pulp cells localized in the subodontoblastic layer had the ability to differentiate into hard tissue-forming cells, and thus these cells may serve as a source of odontoblastic cells.  相似文献   

14.
15.
Summary The distribution of laminin-like immunoreactivity in adult normal and denervated cat mandibular tooth pulps was studied by the use of fluorescence microscopy and pre-embedding immunogold electron microscopy. Immunoreactivity to collagen IV was also assessed in order to distinguish basement membranes. In normal pulps, light-microscope laminin-like immunoreactivity was strong along blood vessels and Schwann cell sheaths, and a faint immunoreactivity was seen also in the odontoblast layer. Electron microscopy confirmed the laminin-like immunoreactivity of endothelial and Schwann cell basement membranes at all pulpal levels. In the odontoblast layer and the predentine, nerve-like structures lacking basement membranes but possessing strong membrane laminin-like immunoreactivity were encountered. In addition, a clear-cut laminin-like immunoreactivity of plasma membranes of the somata and processes of odontoblasts was seen. Observations on denervated pulps as well as pulps in which nerve regeneration had taken place did not reveal any changes in the pattern of laminin-immunoreactivity in basement membranes or odontoblasts. Distribution of collagen IV-like immunoreactivity was very similar to laminin-like immunoreactivity in basement membranes of blood vessels and Schwann cells, and appeared unaffected by denervation. The odontoblasts and nerve-like profiles in the odontoblast layer were devoid of collagen IV-like immunoreactivity. We propose that odontoblast-associated laminin could be of significance as guidance for regenerating terminal pulpal nerve fibers to appropriate targets.  相似文献   

16.
Odontoblast-lineage cells acquire heat-shock protein (HSP)-25-immunoreactivity (IR) after they complete their cell division, suggesting that this protein acts as a switch between cell proliferation and differentiation during tooth development. However, there are few available data concerning the relationship between cell proliferation and differentiation following cavity preparation. The present study aims to clarify the expression of HSP-25 in the odontoblast-lineage cells with their proliferative activity after cavity preparation by immunocytochemistry for HSP-25 and cell proliferation assay using 5-bromo-2'-deoxyuridine (BrdU) labeling. In untreated control teeth, intense HSP-25-IR was found in odontoblasts and some subodontoblastic mesenchymal cells. Cavity preparation caused the destruction of odontoblasts and the disappearance of HSP-25-IR was conspicuous at the affected site, although some cells retained HSP-25-IR and subsequently most of them disappeared from the pulp-dentin border by postoperative day 1. Contrary, some subodontoblastic mesenchymal cells with weak HSP-25-IR began to take the place of degenerated cells, although no proliferative activity was recognizable in the dental pulp. Interestingly, proliferative cells in the dental pulp significantly increased in number on day 2 when the newly differentiating cells already arranged along the pulp-dentin border, and continued their proliferative activity in the wide range of the pulp tissue until day 5. These findings indicate that progenitor cells equipped in the subodontoblastic layer firstly migrate and differentiate into new odontoblast-like cells to compensate for the loss of the odontoblast layer, and subsequently the reorganization of dental pulp was completed by active proliferation of the mesenchymal cells occurring in a wide range of pulp tissue.  相似文献   

17.
18.
Summary The relationship between odontoblasts and pulp capillaries in the process of dentinogenesis was studied in rat lower incisors, both on the labial and lingual sides, using light and transmission electron microscopy. The odontoblasts showed remarkable differences from the apical to the incisal end. Near the apical end of the tooth, immature odontoblasts, which were thought to be involved in the formation of the mantle dentin, were arranged in a single layer, and continuous capillaries were located just beneath the odontoblasts. In the middle of the tooth, mature odontoblasts with highly developed cell organelles and notable processes formed a pseudostratified layer; fenestrated capillaries were found between these cells close to the predentin. The height of the odontoblast layer and the rate of dentin deposition on the labial (enamel-related) side was significantly greater than that on the lingual (cementum-related) side. Near the incisal end, cementum-related odontoblasts gradually decreased in height and number to become post-odontoblasts that produced atubular dentin; continuous capillaries were located subjacent to the post-odontoblasts. On the labial (enamel-related) side, however, odontoblasts retained their pseudostratification; fenestrated capillaries were still observed in the odontoblast layer. No atubular dentin was formed on the labial side.  相似文献   

19.
The first mandibular molars of the Swiss albino mice, 1 through 4 days of age, were fixed in glutaraldehyde or Karnovsky's fixative. The tissues were postfixed in OSO4, dehydrated and embedded in Epon. The prepolarizing, polarizing and secretory odontoblasts were described. The prepolarizing cells, located in the vicinity of the cervical loop, were mesenchymal-like in morphology. The cells of the polarizing stage possessed organelles indicative of protein synthesis. The nucleus was located proximally. Aperiodic fibers were evident in the wide basement membrane. The secretory odontoblasts were long, slender, polarized cells closely adjoining one another. Each odontoblast possessed six morphologically discernible regions: (1) an infranuclear region, limited in size and containing few cellular organelles; (2) a nuclear region, housing the oval nucleus and a few associated lamellae of rough endoplasmic reticulum as well as a limited number of mitochondria; (3) a supranuclear rough endoplasmic reticulum region, possessing an abundance of these organelles as well as some mitochondria and secretory vesicles; (4) a Golgi region, occupying the middle third of the cell, housing the elements of an extensive Golgi apparatus which was surrounded by peripherally located profiles of rough endoplasmic reticulum; additionally, this region contained smooth endoplasmic reticulum, mitochondria, numerous secretory granules and vesicles and occasional intracellular collagen fibers; (5) an apical rough endoplasmic reticulum region, containing a rough endoplasmic reticulum component that was less extensive than its supranuclear counterpart; in addition, this region was the one richest in mitochondria and contained a plethora of secretory vesicles and granules; (6) the odontoblastic process, a region mostly void of organelles, containing various secretory products, some of which appeared to be in the process of being released extracellularly into the surrounding dentin matrix.  相似文献   

20.
Carda C  Peydró A 《Tissue & cell》2006,38(2):141-150
The structure of the dentin, consists of the following elements: the odontoblastic processes, dentinal tubules and their periodontoblastic spaces. The odontoblasts are aligned in a single layer in the periphery of the dental pulp and secrete the organic components of dentin. The vitality of dentin is mediated too by the nerve fibres. The ultrastructure of the trigeminal sensory nerves in dentin, especially in relation to odontoblasts remains to be clarified. We studied the third molars and young premolars. The specimens were fixed in glutaraldehyde immediately after extraction. Our investigations give evidence to prove that the distribution of the dentinary tubules is homogeneous, containing a principal odontoblastic prolongation in the regions of the inner dentine, and only in special cases more than one. The area of the dentinary tubules and the odontoblastic prolongations' area were studied. The nervous fibres appeared accompanying 30-70% of the odontoblastic prolongations and their synapsis-like relation with the odontotoblastic processes was demonstrated. The existence of very few periodontoblastic spaces, and intradentinal sensory axons, as well as the intercellular connections will allow us to discover more about the mechanisms of the dentinary permeability, and its significance in maintenance and repair of the human pulpodentinal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号