首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
Chromatin in isolated rat liver nuclei was compared with chromatin in (i) nuclei depleted of H1 by acid extraction; (ii) nuclei treated at pH 3.2 (without removal of H1), and (iii) depleted nuclei following reassociation of H1. Electron microscopy and digestion by DNase I, micrococcal nuclease and endogenous Ca/Mg endonuclease were used for this comparative examination. Electron micrographs of H1-depleted nuclei showed a dispersed and finely granular appearance. The rate of DNA cleavage by micrococcal nuclease or DNase I was increased several-fold after H1 removal. Discretely sized intermediate particles produced by Ca/Mg endonuclease in native nuclei were not observed in digests of depleted nuclei. Digestion by micrococcal nuclease to chromatin particles soluble in 60 mM NaCl buffer appeared not to be affected in depleted nuclei. When nuclei were treated at pH 3.2, neither the appearance of chromatin in electron micrographs nor the mode or rate of nuclease digestion changed appreciably. Following reassociation of H1 to depleted nuclei, electron micrographs demonstrated the reformation of compacted chromatin, but the lower rate of DNA cleavage in native nuclei was not restored. Further, H1 reassociation produced a significant decrease in the solubility of nuclear chromatin cleaved by micrococcal nuclease or Ca/Mg endonuclease. In order to evaluate critically the reconstitution of native chromatin from H1-depleted chromatin we propose the use of digestion by a variety of nucleases in addition to an electron microscopic examination.  相似文献   

4.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

5.
The proteinase activities of nuclei isolated from tissues differing in their mitotic activities (brain, thymus, liver, ascite lymphoma) towards the histones and non-histone acid -- extractable proteins were studied. The sensitivity of different histone fractions to nuclear proteinase depends on temperature and time of nuclei incubation under conditions providing for complete dissociation of chromatin proteins from DNA (2 M NaCl--5 M urea). The proteinase activity in the brain and thymus nuclei is revealed only under prolonged (43 hrs) incubation of the nuclei at 25 degrees C, which is accompanied by partial proteolysis of histone H1. Histone H4 from brain nuclei and histone H2a from thymus nuclei are preferably degraded. In the nuclei isolated from the mice ascite cell lymphoma NK/ly and from rat liver the enzyme activity is revealed mainly towards the arginine-enriched histones H3 and H4. The proteolysis of the arginine-enriched histones in tumour cell nuclei is more complete. A high sensitivity to proteolysis was observed for non-histone acid-extractable proteins with low electrophoretic mobility, which were found in brain and tumour cell nuclei.  相似文献   

6.
Mononucleosomes were released from both isolated mammalian (hog thyroid) and protozoan (Tetrahymena) nuclei by the bleomycin-induced DNA-strand breaking reaction. Trout sperm nuclei, on the other hand, were protected from the bleomycin-mediated DNA degradation. The mononucleosomes released from the bleomycin-treated nuclei contained the core histones H2A, H2B, H3, and H4; while HMG1 and HMG2 proteins, in addition to the core histones, were detected in the mononucleosomes obtained by micrococcal nuclease digestion of nuclei. HMGs, but not H1 histone, were dissociated into the supernatant by cleavage of chromatin DNA with bleomycin, whereas both HMGs and H1 were found in that fraction by digestion of nuclei with micrococcal nuclease. HMG1 and HMG2 were exclusively dissociated from chromatin with 1 mM bleomycin under the solvent condition where the DNA strand-breaking activity of the drug is repressed. These observations suggest the possibility that bleomycin preferentially binds to linker DNA regions not occupied by H1 histone in chromatin and exclusively dissociates HMG proteins and breaks the DNA strand. The results of the effects on bleomycin-induced DNA cleavage of nuclei of various drugs including polyamines, chelating agents, intercalating antibiotics such as mitomycin C or adriamycin, and radical scavengers are also presented.  相似文献   

7.
A chromatin fraction solubilized from mouse myeloma nuclei under near-physiological ionic conditions by very mild micrococcal nuclease digestion at 0°C is enriched at least 7-fold in DNA complementary to total myeloma polyadenylated mRNA, and 15-fold in DNA originating near the replication fork (labeled within 30 s). Newly replicated DNA recovered in solubilized chromatin after brief labeling was incorporated mainly into particles sedimenting with, or faster than, mononucleosomes. A rapid decrease in enrichment of newly replicated DNA in readily released, soluble chromatin with increasing labeling times indicated that newly replicated chromatin matured within 90 s to a form that was partitioned similarly to bulk chromatin by this fractionation method. Previous studies showed that chromatin readily solubilized from myeloma nuclei is enriched in high-mobility-group (HMG) and other non-histone proteins, RNA and single-stranded DNA; and depleted in H1 and 5-methylcytosine, relative to bulk chromatin (Jackson, J.B., Pollock, J.M., Jr., and Rill, R.L. (1979) Biochemistry 18, 3739–3748). Mild digestion of chicken erythrocyte nuclei with micrococcal nuclease yielded a soluble chromatin fraction (1–2% of the total DNA) with similar properties. This fraction was enriched at least 6-fold in DNA complementary to chicken globin mRNA, relative to total erythrocyte DNA.  相似文献   

8.
Glucocorticoid receptors (RG) and mammary tumor virus (MM-TV) DNA sequences were extracted by micrococcal nuclease digestion from the nuclei of C3H mouse mammary tumor cells in order to specify their relative distribution in chromatin. RG was labelled and translocated into the nuclei by incubating cells with 3H Dexamethasone (3H Dex). The purified nuclei were then treated at 2 degrees C with micrococcal nuclease. Three chromatin fractions were successively obtained: an isotonic extract (ne3H1), ahypotonic extract (ne2) and the residual pellet (P). The Dex-RG complexes were measured by the hydroxyapatite technique. The MMTV DNA sequences were titrated by molecular hybridization with an excess of MMTV radioactive cDNA probe. Up to 75% of the nuclear 3H Dex and the MMTV radioactive cDNA probe. Up to 75% of the nuclear 3H Dex and MMTV DNA sequences were extracted in a concentration dependent manner while only 10-15% of nucleic acids became soluble in 10% perchloric acid. The extracted 3H Dex-RG complex was found to be partly bound to soluble chromatin and partly free. The free complex displayed similar sedimentation constants (4S, 7S) and DNA binding ability to the cytosol receptor. The 3H Dex-RG complexes were 2 to 8 fold more concentrated in ne1, which is known to be enriched in active chromatin, than in ne2. Conversely, the concentration of MMTV DNA sequences per microgram DNA was the same in the three nuclear fractions. These results suggest that the Dex-RG complexes are concentrated in an active fraction of chromatin. We propose that, among the 20-30 copies of MMTV genes per haploid genome, only a small proportion are transcribed or regulated.  相似文献   

9.
We have examined the nature of the nuclear antigen recognized by certain natural human antibodies that react specifically with both cell nuclei and plasma membranes from many species. Partial purification of these antibodies, called X-ANA, is achieved by binding to and rapid elution from the surface of viable human leukocytes. Chicken erythrocyte chromatin was solubilized by digestion with staphylococcal nuclease and fractionated into a 0.15 M NaCl soluble fraction that consisted of core mononucleosomes lacking H1/H5, and a 0.15 M NaCl insoluble fraction composed of polynucleosomes with H1/H5 present. No proteins other than histones were detected. Native and reconstituted mononucleosomes displaced IgG of the leukocyte eluates from nuclei of frozen mouse kidney sections and from the walls of plastic tubes coated with polynucleosomes. The reconstituted core mononucleosomes were 4- 10-fold less efficient inhibitors than native mononucleosomes. Trypsin digested mononucleosomes, free high m.w. DNA, and free histones displayed no or very weak inhibitory activity. The data indicate that X-ANA recognize a complex consisting of the core histones H2A, H2B, H3, H4, and DNA of 140 to 200 base pairs in length.  相似文献   

10.
Limited digestion of trout testis nuclei with DNase I selectively degrades the protamine genes. Concomitant with the degradation of transcribed DNA sequences a series of chromosomal proteins are released; among these, the major species corresponds to the high mobility group protein H6. The amounts of H6 released from chromatin by limited DNase I action and that in the residual nuclear pellet have been determined. A very high proportion of H6 is associated with DNase I sensitive chromatin regions.  相似文献   

11.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

12.
The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.  相似文献   

13.
We have removed histone H1 specifically from calf thymus nuclei by low pH treatment, and studied the digestion of such nuclei in comparison with undepleted nuclei. By a number of criteria the nuclei do not appear damaged. The DNA repeat-length in nuclear chromatin is found to be the same (192 +/- 4 bp) in the presence or absence of H1. These experiments demonstrate that the core histone complex of H2A, H2B, H3, and H4 can itself protect DNA sequences as long as 168 bp from nuclease. Our interpretation is that this represents an important structural element in chromatin, carrying two full turns of superhelical DNA. Depending on conditions of digestion this 168 bp fragment may be metastable and is normally rapidly converted by exonucleolytic trimming to the well-known "core-particle" containing 145 bp. Larger stable DNA fragments observed indigestion of H-1 depleted nuclei appear to arise from oligomers assembled from 168 bp cores in close contact exhibiting trimming of 0-20 bp at the ends. Electrophorograms of undepleted nuclear digests reveal oligomer bands in several size classes, each corresponding to one or more combinations of 168 bp particles, H1-protected spacers of about 20 bp length, and particles with ends trimmed to varying degrees.  相似文献   

14.
15.
16.
The protein IP25, which has previously been reported to accumulate in the chromatin during erythroid differentiation of Friend-virus-transformed erythroleukemia cells (FL cells), is shown to behave like histone H1 without being structurally related to it. Like H1, IP25 is not released by digestion of FL cells nuclei with DNAse I. After micrococcal digestion IP25 and H1 are differentially distributed in the nucleosome monomers and dimers. This distribution suggests an internucleosomal location for IP25 and H1. Different rates of digestion are observed between nuclei of differentiating and non-differentiating FL cells with both DNAse I and micrococcal nuclease. These differences could be due to the presence of IP25 in the chromatin of differentiating cells.  相似文献   

17.
18.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

19.
20.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号