首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of functional characteristics of 103 neurons in visual cortical area 17 was investigated in acute experiments on curarized, light-adapted cats during a change in various parameters of the local photic stimuli. The average threshold sensitivity of the neuron population was 32 dB (0.052 nit), the sharpness of orientation tuning was 37°, the critical summation time was 57 msec, and the reactivity recovery time 190 msec. Photic sensitivity was lower during light adaptation than during dark adaptation, orientation selectivity of the neurons was increased, temporal summation was lengthened, and the time required by the neuron to recovery from after-inhibition was shortened. Several properties of the cortical neurons depended on the accentricity of their receptive fields: Cells with centrally localized receptive fields on average had lower thresholds and shorter summation time and they recovered their reactivity more quickly; their activity was of a higher frequency and they more often generated short phasic discharges than neurons with receptive fields in the peripheral part of the visual field. The mechanisms responsible for changes in the properties of neurons in the central and peripheral visual channels during dark and light adaptation are discussed. The presence of several inhibitory subsystems in the cortex regulating unit activity in the primary visual projection area is postulated.  相似文献   

2.
Recovery cycles of unit responses in the primary visual cortex to local photic stimulation of their receptive fields were studied in unanesthetized, immobilized cats by the paired stimulus method. In most cases the process of recovery of neuronal reactivity did not follow a steady course. Recovery from depression evoked by the first stimulus took place more suddenly in neurons in the central part of the visual field, and initial recovery of activity was more complete than in peripheral neurons. Differences in the synchronization of inhibitory and excitatory inputs to neurons responsible for central and peripheral vision are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 233–240, May–June, 1981.  相似文献   

3.
Characteristics of extra- and intracellular responses of 57 neurons in the vibrissal projection zone of the first somatosensory area of the cat cortex were investigated. The intensity of both excitatory and inhibitory unit responses was found to diminish during successive stimulation of different parts of the receptive fields in the direction from center toward periphery. Usually, when central parts of receptive fields were stimulated, inhibition in the unit responses was postexcitatory, whereas when peripheral parts were stimulated inhibition could precede excitation. The possibility of an increase in the role of interaction between excitatory and inhibitory processes arising in neurons in response to vibrissal stimulation with an increase in the distance from center to periphery of receptive fields of single cortical cells is discussed. Neurons found during one insertion of the microelectrode were seen to have common center for their receptive fields, but the diameters of the receptive fields of individual neurons could differ significantly. Moreover, during such vertical insertions responses of neurons with primary inhibition to the stimuli presented were recorded.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 124–130, March–April, 1980.  相似文献   

4.
In acute experiments on cats under chloralose anesthesia (70 mg/kg) unit activity was recorded extra- and intracellularly in the sensomotor cortex (areas 4 and 6) during prolonged (up to 1000 msec) photic stimulation. Responses of on-off type were generated by 100% of neurons tested to photic stimuli whose duration corresponded to the recovery cycle of functional changes after a single flash, determined by the paired stimulation method. Cutaneous stimulation affected the appearance of the photic off response if it led to a spike discharge of the neuron before the off response. It is suggested that IPSPs of cortical neurons largely determine both the duration of the cycle of functional recovery after a single flash and also differences in the pattern of generation of the off response and its interaction with responses to cutaneous stimulation.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 355–360, July–August, 1977.  相似文献   

5.
Spatial excitability contours in receptive fields of visual cortical neurons during changes in the physical and physiological parameters of photic stimulation were investigated in acute experiments on immobilized cats under conditions of dark, mesopic, and low photopic adaptation. With the change from dark to low mesopic adaptation the shape and size of the receptive fields detected by testing with flashes of constant intensity are unchanged, but with the transition to low photopic adaptation the receptive field becomes long and very narrow in 72% of cases, and the acuity of its orientational and directional tuning becomes much sharper. Against an unchanged background illumination, loss of brightness of the test light slit leads to narrowing of the measurable receptive field. Excitability contours of the receptive field estimated on the basis of absolute threshold of the cell response and level of intensity necessary to obtain the same number of spikes in the response become much narrower as the threshold criterion rises and during dark adaptation. Reactivity contours of the receptive field in response to stimulation of physiologically equal intensities (equal to the increase in threshold) under conditions of photopic adaptation also are much narrower than reactivity contours under conditions of dark adaptation. Evaluation of receptive fields with allowance for the possible contribution of effects of light scatter on the screen and in the ocular media showed that in most cases their size cannot be explained by these phenomena.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 115–123, March–April, 1980.  相似文献   

6.
Receptive fields of 262 pulvinar neurons were studied. Receptive fields of 142 of these neurons were studied in detail with the aid of a stationary spot of light, flashing in different parts of the receptive field. Depending on responses to presentation of the stationary stimulus the neurons were divided into six groups. The first group included neurons with on—off responses to photic stimulation (44 of 142), the second group neurons with off responses only (42 of 142). In cells of the third group (19 of 142) an on response only was recorded in all structures of the receptive field tested. Neurons of the fourth group (eight of 142) had a receptive field of similar structure to that of the simple receptive fields of neurons in cortical area 17. The fifth group (10 of 142) included neurons with a receptive field of concentric structure, the sixth (19 of 142) consisted of neurons with receptive fields with multiple discharge centers. The structure of the receptive field of these neurons was mosaic, with an irregular distribution of exciting and "silent" zones. The mean response latency of the pulvinar neurons was 40–70 msec. Responses of neurons with shorter (20 msec) and longer (130–160 msec) latent periods also were recorded.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 3–10, January–February, 1979.  相似文献   

7.
The effect of parameters of local photic stimulation of different points of the receptive field on the characteristics of dynamic reorganization of receptive fields of cortical and geniculate visual neurons within microintervals of time observed previously was studied in computer-controlled experiments on unanesthetized, curarized cats. Dependence on the degree of widening of the receptive field and the temporal characteristics of this process on the background illumination level, intensity, contrast, area, duration, energy, and orientation of a local rectangular or circular photic stimulus flashing in random order at 100 points of the tested part of the visual field was studied. It was concluded that the background illumination level and the intensity, size, duration, and orientation of the stimulus have a specific effect on dynamic reorganization of the receptive field. The effects of all the parameters studied on the dynamics of the receptive field were shown to be nonlinear functions with optimal values that differed for different cells. The possible functional role of this effect and also the probability that it may participate in information coding in the visual system are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 339–346, July–August, 1983.  相似文献   

8.
Electrical activity of single unit in the Clare-Bishop visual association area of the cortex was studied in acute experiments on cats immobilized with Flaxedil and after pretrigeminal sections. The method of extracellular recording of action potentials of single units was used. The experimental results showed that 95.5% of cells responding to visual stimulation responded to movement of a spot of light in the receptive field of the neurons, and 55% of the cells responded selectively to the direction of movement. Some neurons responded to movement of a stimulus only when it entered and left the receptive field. About 85.3% of cells responded to a flashing spot of light, and also to a general change in the intensity of illumination of the receptive field. The receptive field of neurons of the Clare-Bishop area in most cases were in the form of stripes with their long axis horizontal. The results point to the important role of this cortical association area in the central analysis of visual information.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSSR, Erevan. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 22–29, January–February, 1978.  相似文献   

9.
The substructural organization of receptive fields of lateral suprasylvian cortical neurons, sensitive to movement of visual stimuli, was investigated in cats. The experimental results showed that receptive fields of neurons in this cortical area, judging by responses to movement, consist mainly of cells with qualitatively different characteristics. With the unmasked method of presentation of a moving stimulus, a reduction in the amplitude of movement as a rule evoked a directional response of the cell, whereas with the masked method, and with the same amplitudes of movement, a nondirectional response appeared. The receptive fields of some neurons were particularly sensitive to movement of borders but did not respond to the body of the stimulus like receptive fields of neurons described in other visual structures. Heterogeneity of the substructural organization of receptive fields of lateral suprasylvian cortical neurons can be explained by convergence of inputs on the neuron and it is regarded as the basis of integrative mechanisms in this structure.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 293–300, May–June, 1985.  相似文献   

10.
Single unit responses in the visual cortex of the waking rabbit to repetitive photic stimulation at a frequency of once every 2.5 sec were studied. Depending on the total number of spikes in the response, the dynamics of the responses could be divided into two types: "fast" and "slow." From 5 to 15 stimuli were required to establish a stable level of response with changes of the first type, but 50 to 100 stimuli were needed for the response with changes of the second type. About 50% of all neurons did not change the characteristics of response. In the group of neurons with changing responses, partial habituation was found in 55–59% of cells; there were 25% of neurons with sensitization of discharge and 17–20% with a humpbacked type of response dynamics. A "slow" dynamics of unit responses in most cases was accompanied by changes in the duration of inhibitory pauses in the response; negative correlation of these values was observed in 65% of neurons.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 451–459, September–October, 1978.  相似文献   

11.
12.
13.
On-responses of primary visual cortical neurons to local photic stimulation of the receptive field center by stimuli of scotopic and mesopic ranges of intensity were investigated in dark-adapted curarized cats. Only phasic excitation (type I) was observed in 16% of cells studied, phasic and prolonged excitation with phasic inhibition between them (type II) was observed in 68%, and prolonged inhibition (type III) alone in 16% of cells. The thresholds of phasic excitation in the neuronal responses lay between 0.7 and 2200 trolands (td) and coincided with thresholds of activation of the cone system, whereas thresholds of prolonged excitation lay within the range 0.02–9 td and coincided with thresholds of rod inputs. Inhibitory effects were manifested as phasic inhibition observed on peristimulus histograms, disturbances of the monotony of the responses versus stimulus intensity curve, and also as prolonged inhibition in on-responses. All inhibitory effects were observed in the mesopic range of intensities (0.7–2200 td) and were connected with functioning of the cones.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 359–366, July–August, 1982.  相似文献   

14.
Spatial frequency characteristics of receptive fields of occipital cortical neurons were investigated in cats during presentation of visual stimuli consisting of gratings in four or eight standard orientations. The maximal increase in discharge frequency of the neurons was observed when the grating was presented in one particular orientation, which was taken to be optimal for those particular neurons. Responses of some neurons to presentation of gratings in nonoptimal orientations were less than optimal; inhibition of activity below the spontaneous discharge level was observed in other cells in this case. Maximal inhibition was observed to the orientation perpendicular to optimal. Inhibition of unit activity evoked by presentation of gratings in the nonoptimal orientation was shown to be a function of spatial frequency.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 227–232, May–June, 1981.  相似文献   

15.
Study of receptive fields (RFs) of neurones in the postero-temporal cortex (field 21) of alert cat at three levels of visual adaptation: light photopic, light mesopic and practically dark or extremely low scotopic adaptations--revealed invariance of the most part of the studied RFs to the level of visual adaptation. Reorganization of RFs, connected with change of background luminosity were observed only in 12% of visually activated neurones. Significant reduction of responses to optic stimulation is shown at increase of the level of luminosity in 75% of neurones, revealing adaptive reorganizations. It is suggested that these reorganizations may take place in analogy with neurones of the field 17 on account of different involvement of intracortical inhibitory mechanisms (and, probably, not only in the postero-temporal cortex, but also in structures which precede it in visual hierarchy). Study of neurones sensitivity in the field 21 to parameters of optic stimulation revealed their considerable invariance to the length and orientation of the optic stimulus moving through the RF (60% of cases). Testing of RF by a rhombic optic stimulus did not change neuronal reactions, the form and dimensions of RF did not significantly change.  相似文献   

16.
Neuronal organization in the Clare-Bishop cortical association area was studied by consecutive vertical penetration of an electrode and analysis of unit responses to photic stimulation during each penetration. Activity of one or two neurons was recorded during 131 penetrations, and activity of over 3 neurons responding to photic stimulation (visually driven) during 55 penetrations. In 8 of the 55 penetrations all neurons discovered in each had identical characteristics; this type of organization corresponded most of all to the columnar organization of the cortical neurons. In 24 penetrations the neurons were arranged in groups: two or three neurons of one type intermingled with neurons of other types. In 18 penetrations considerable overlapping of the receptive fields of neurons in the same column was observed. A chaotic distribution of neurons with different characteristics was found in 5 penetrations. It is suggested that the organization of neurons in the Clare-Bishop area in columns as functional units of cortical structure is not the principal type of their organization.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 297–302, July–August, 1979.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号